Abstract algebra不算是一门简单的学科,这门学科在国内叫做抽象代数,经常有很多学生在学linear algebra或者analysis(advance calculus)的时候觉得并不困难,但是却觉得Abstract algebra很难,这是因为没有找到正确的方法学习Abstract algebra,UpriviateTA有一系列非常擅长Abstract algebra的老师,可以确保您在Abstract algebra取得满意的成绩。
以下是伯克利MATH113的一次assignment.更多的经典案例请参阅以往案例,关于abstract algebra的更多的以往案例可以参阅相关文章。abstract algebra代写请认准UpriviateTA.
identity The identity element is the function \(I: X \rightarrow G\) which is identically equal to the identity element, \(e,\) of \(G .\) Indeed, for any \(f \in F\) and any \(x \in X\) we have \((I * f)(x)=I(x) \cdot f(x)=e \cdot f(x)=f(x) .\) Hence, \(I * f=f\).
inverse Let \(f \in F\) be any element of \(F .\) Let \(g: X \rightarrow G\) be defined by \(g(x):=\) \((f(x))^{-1}\). Then for any \(x \in X\) we have \((g * f)(x)=g(x) \cdot f(x)=(f(x))^{-1}\). \(f(x)=e=I(x) .\) Hence, \(g * f=I\) so that \(g\) is a left-inverse of \(f\).
associativity Let \(f, g,\) and \(h\) be elements of \(F\). For any \(x \in X\) we have \(f *(g * h)(x)=\) \(f(x) \cdot(g * h)(x)=f(x) \cdot(g(x) \cdot h(x))=(f(x) \cdot g(x)) \cdot h(x)=(f * g)(x) \cdot h(x)=\)
\((f * g) * h(x) .\) Hence, \(f *(g * h)=(f * g) * h\)
\(a\) must be the identity element.
to one. Thus, \(A\) does not have an inverse in \(G\).
$$
x \mapsto\left\{\begin{array}{l}
x+4 \text { if } x<12 \\
x-12 \text { if } x \geq 12
\end{array}\right.
$$
Show that \(\sigma\) is a permutation and describe its orbits.
abstract algebra代写请认准UpriviateTA. UpriviateTA为您的留学生涯保驾护航。