Abstract algebra不算是一门简单的学科,这门学科在国内叫做抽象代数,经常有很多学生在学linear algebra或者analysis(advance calculus)的时候觉得并不困难,但是却觉得Abstract algebra很难,这是因为没有找到正确的方法学习Abstract algebra,UpriviateTA有一系列非常擅长Abstract algebra的老师,可以确保您在Abstract algebra取得满意的成绩。
以下是UCLA的一次assignment.更多的经典案例请参阅以往案例,关于abstract algebra的更多的以往案例可以参阅相关文章。abstract algebra代写请认准UpriviateTA.
$$
N=\bigcap_{x \in G} x H x^{-1}
$$
Here is some extra practice with left cosets of various subgroups. Let $H$ and $K$ be subgroups of $G,$ and consider the map $f$ which assigns to the coset $g(H \cap K)$ the pair of cosets $(g H, g K)$. Show that $f$ is well-defined and injective, and therefore
$$
[G: H \cap K] \leq[G: H][G: K]
$$
Thus (Poincaré) the intersection of finitely many subgroups of finite index also has finite index.
$g_{1}(H \cap K)=g_{2}(H \cap K)$ iff $g_{2}^{-1} g_{1} \in H \cap K$ iff $g_{1} H=g_{2} H$ and $g_{1} K=g_{2} K,$ proving
both assertions.
abstract algebra代写请认准UpriviateTA. UpriviateTA为您的留学生涯保驾护航。