19th Ave New York, NY 95822, USA

数学代考|Operations Research运筹学代写

my-assignmentexpert愿做同学们坚强的后盾，助同学们顺利完成学业，同学们如果在学业上遇到任何问题，请联系my-assignmentexpert™，我们随时为您服务！

运筹学代写

The concept of optimization is now well rooted as a principle underlying the analysis of many complex decision or allocation problems. It offers a certain degree of philosophical elegance that is hard to dispute, and it often offers an indispensable degree of operational simplicity. Using this optimization philosophy, one approaches a complex decision problem, involving the selection of values for a number of interrelated variables, by focusing attention on a single objective designed to quantify performance and measure the quality of the decision.

This one objective is maximized (or minimized, depending on the formulation) subject to the constraints that may limit the selection of decision variable values. If a suitable single aspect of a problem can be isolated and characterized by an objective, be it profit or loss in a business setting, speed or distance in a physical problem, expected return in the environment of risky investments, or social welfare in the context of government planning, optimization may provide a suitable framework for analysis.
It is, of course, a rare situation in which it is possible to fully represent all the complexities of variable interactions, constraints, and appropriate objectives when faced with a complex decision problem. Thus, as with all quantitative techniques of analysis, a particular optimization formulation should be regarded only as an approximation.

Skill in modeling, to capture the essential elements of a problem, and good judgment in the interpretation of results are required to obtain meaningful conclusions. Optimization, then, should be regarded as a tool of conceptualization and analysis rather than as a principle yielding the philosophically correct solution

什么是运筹学代写

• 确定需要解决的问题。
• 围绕问题构建一个类似于现实世界和变量的模型。
• 使用模型得出问题的解决方案。
• 在模型上测试每个解决方案并分析其成功。
• 实施解决实际问题的方法。

运筹学代写的三个特点

• 优化——运筹学的目的是在给定的条件下达到某一机器或者模型的最佳性能。优化还涉及比较不同选项和缩小潜在最佳选项的范围。
• 模拟—— 这涉及构建模型，以便在应用解决方案刀具体的复杂大规模问题之前之前尝试和测试简单模型的解决方案。
• 概率和统计——这包括使用数学算法和数据挖掘来发现有用的信息和潜在的风险，做出有效的预测并测试可能的解决方法。