Scroll Top
19th Ave New York, NY 95822, USA

数学代写|数值分析代写numerical analysis代考|NUMERICAL METHODS FOR THE SOLUTION OF SYSTEMS OF EQUATIONS

如果你也在 怎样代写数值分析numerical analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数值分析numerical analysis是研究使用数值逼近(相对于符号操作)来解决数学分析问题的算法(有别于离散数学)。数值分析在工程和物理科学的所有领域都有应用,在21世纪还包括生命科学和社会科学、医学、商业甚至艺术领域。

数值分析numerical analysis目前计算能力的增长使得更复杂的数值分析得以使用,在科学和工程中提供详细和现实的数学模型。数值分析的例子包括:天体力学中的常微分方程(预测行星、恒星和星系的运动),数据分析中的数值线性代数,以及用于模拟医学和生物学中活细胞的随机微分方程和马尔科夫链。

my-assignmentexpert™ 数值分析numerical analysis作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的数值分析numerical analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此数值分析numerical analysis作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数值分析numerical anaysis代写服务。我们的专家在数学Mathematics代写方面经验极为丰富,各种数值分析numerical analysis相关的作业也就用不着 说。

我们提供的数值分析numerical analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|数值分析代写numerical analysis代考|NUMERICAL METHODS FOR THE SOLUTION OF SYSTEMS OF EQUATIONS

数学代写|数值分析代写numerical analysis代考|LINEAR ALGEBRA REVIEW

A vector $x \in \mathbb{R}^{n}$ is defined to be an ordered $n$-tuple of real numbers:
$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T},
$$
where the superscript (denoting transpose) indicates that the vector is considered to be a column vector. A matrix $A \in \mathbb{R}^{m \times n}$ is a rectangular array of $m$ rows and $n$ columns:
$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \
\vdots & \vdots & \vdots & \ddots & \vdots \
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right] .
$$
We will assume that the student is familiar with the basic operations of addition and multiplication of matrices.

We will use no diacritical marks to distinguish vectors from scalars. In general, matrices will be denoted by upper case Roman letters, and vectors by lower case Roman letters. The notational correspondence between the vector or matrix and its components will almost always be as in the above examples.

Our assumption that vectors are column vectors means that we can regard them as matrices in $\mathbb{R}^{n \times 1}$, and this allows us to write the ordinary vector dot product as
$$
(x, y)=x \cdot y=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} .
$$
Note that reversing the order of multiplication results in a matrix, not a scalar:
$$
x y^{T}=\left[\begin{array}{ccccc}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} & \cdots & x_{1} y_{n} \
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} & \cdots & x_{2} y_{n} \
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3} & \cdots & x_{3} y_{n} \
\vdots & \vdots & \vdots & \ddots & \vdots \
x_{n} y_{1} & x_{n} y_{2} & x_{n} y_{3} & \cdots & x_{n} y_{n}
\end{array}\right] .
$$
Note also that this notation allows us to write
$$
(x, A y)=x^{T} A y=\left(A^{T} x\right)^{T} y=\left(A^{T} x, y\right),
$$
which is one of the important properties of the transpose of a matrix.
Given a square matrix $A \in \mathbb{R}^{n \times n}$, if there exists a second square matrix $B \in \mathbb{R}^{n \times n}$ such that $A B=B A=I$, then we say that $B$ is the inverse of $A$ and we write $B=A^{-1}$. Not all square matrices have an inverse! If a matrix $A \in \mathbb{R}^{n \times n}$ has an inverse, we say that $A$ is nonsingular; otherwise, we say that $A$ is singular.

The following theorem summarizes the conditions under which a matrix is nonsingular, and also connects them to the solvability of the linear systems problem.

数学代写|数值分析代写numerical analysis代考|LINEAR SYSTEMS AND GAUSSIAN ELIMINATION

In $\S 2.6$ we constructed an algorithm that solved tridiagonal linear systems by first reducing them to triangular form, and then solving the triangular system. In this section, we will construct a general version of that algorithm. We begin by writing the linear system as a single augmented matrix:
$$
A^{\prime}=[A \mid b],
$$
where the vertical bar is supposed to separate the coefficient matrix from the right-side vector. The solution algorithm is then applied to $A^{\prime}$.

The algorithm is the same one that is taught in a standard linear algebra course, and which we first saw in $\S 2.6$ : Gaussian elimination. It works by systematically eliminating nonzero elements below the main diagonal of the coefficient matrix. This is accomplished by using only those operations that preserve the solution set of the system, known as elementary row operations:

  1. Multiply a row by a nonzero scalar, $c$;
  2. Interchange two rows;
  3. Multiply a row by a nonzero scalar, $c$, and add the result to another row.
    If we can manipulate from one matrix to another using only elementary row operations, then the two matrices are said to be row equivalent.

The important theorem that connects the elementary row operations to the solution of linear systems is the following.

Theorem 7.2 Let $A^{\prime}$ be the augmented matrix corresponding to the linear system $A x=b$, and suppose that $A^{\prime}$ is row equivalent to $A^{\prime \prime}=\left[\begin{array}{ll}T & c\end{array}\right]$. Then the two linear systems have precisely the same solution sets.

Our goal, then, is to use elementary row operations to reduce the augmented matrix $A^{\prime}$ to the new augmented matrix $A^{\prime \prime}=[U \mid c]$, where $U$ is upper triangular. This will mean that the new system $U x=c$ will be easy to solve.

数学代写|数值分析代写numerical analysis代考|NUMERICAL METHODS FOR THE SOLUTION OF SYSTEMS OF EQUATIONS

数值分析代写

数学代写|数值分析代写NUMERICAL ANALYSIS代考|LINEAR ALGEBRA REVIEW

一个向量X∈Rn被定义为有序的n-实数元组:
$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T},
$$
where the superscript (denoting transpose) indicates that the vector is considered to be a column vector. A matrix $A \in \mathbb{R}^{m \times n}$ is a rectangular array of $m$ rows and $n$ columns:
$$
我们假设学生熟悉矩阵加法和乘法的基本运算。

我们将不使用变音符号来区分向量和标量。一般来说,矩阵用大写罗马字母表示,向量用小写罗马字母表示。向量或矩阵及其分量之间的符号对应几乎总是如上述示例中所示。

我们假设向量是列向量意味着我们可以将它们视为矩阵Rn×1,这允许我们将普通向量点积写为
(X,是)=X⋅是=X吨是=∑一世=1nX一世是一世.
请注意,颠倒乘法的顺序会产生一个矩阵,而不是一个标量:
X是吨=[X1是1X1是2X1是3⋯X1是n X2是1X2是2X2是3⋯X2是n X3是1X3是2X3是3⋯X3是n ⋮⋮⋮⋱⋮ Xn是1Xn是2Xn是3⋯Xn是n].
还要注意,这个符号允许我们写
(X,一种是)=X吨一种是=(一种吨X)吨是=(一种吨X,是),
这是矩阵转置的重要性质之一。
给定一个方阵一种∈Rn×n, 如果存在第二个方阵乙∈Rn×n这样一种乙=乙一种=一世,那么我们说乙是的倒数一种我们写乙=一种−1. 不是所有的方阵都有逆矩阵!如果一个矩阵一种∈Rn×n有一个逆,我们说一种是非奇异的;否则,我们说一种是单数。

以下定理总结了矩阵非奇异的条件,并将它们与线性系统问题的可解性联系起来。

数学代写|数值分析代写NUMERICAL ANALYSIS代考|LINEAR SYSTEMS AND GAUSSIAN ELIMINATION

在§§2.6我们构建了一种算法,通过首先将它们简化为三角形形式,然后求解三角形系统来解决三对角线性系统。在本节中,我们将构建该算法的通用版本。我们首先将线性系统编写为单个增广矩阵:
一种′=[一种∣b],
其中垂直条应该将系数矩阵与右侧向量分开。然后将求解算法应用于一种′.

该算法与标准线性代数课程中教授的算法相同,我们首先在§§2.6:高斯消除。它通过系统地消除系数矩阵主对角线下方的非零元素来工作。这是通过仅使用保留系统解决方案集的那些操作来完成的,称为基本行操作:

  1. 将一行乘以一个非零标量,C;
  2. 交换两排;
  3. 将一行乘以一个非零标量,C,并将结果添加到另一行。
    如果我们可以仅使用基本行操作从一个矩阵到另一个矩阵,则称这两个矩阵是行等价的。

将基本行操作与线性系统解联系起来的重要定理如下。

定理 7.2 让一种′是对应于线性系统的增广矩阵一种X=b,并假设一种′行等价于一种′′=[吨C]. 那么这两个线性系统具有完全相同的解集。

因此,我们的目标是使用基本行操作来减少增广矩阵一种′到新的增广矩阵一种′′=[在∣C], 在哪里在是上三角形。这将意味着新系统在X=C将很容易解决。

数学代写|数值分析代写numerical analysis代考

数学代写|数值分析代写numerical analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

概率论代考

离散数学代写

集合论数理逻辑代写案例

时间序列分析代写

离散数学网课代修

Related Posts

Leave a comment