Scroll Top
19th Ave New York, NY 95822, USA

数学代写|偏微分方程作业代写Partial Differential Equations代考|The Method of Characteristics, Part III: General First-Order Equations

如果你也在 怎样代写偏微分方程Partial Differential Equations这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。偏微分方程Partial Differential Equations是一个方程,它规定了一个多变量函数的各种偏导数之间的关系。该函数通常被认为是一个有待解决的 “未知数”,类似于x被认为是代数方程(如x2-3x+2=0)中有待解决的一个未知数。因此,在现代数学和科学研究中,有大量使用计算机对某些偏微分方程的解进行数值近似的方法。

偏微分方程Partial Differential Equations在以数学为导向的科学领域,如物理学和工程学中无处不在。例如,它们是现代科学对声音、热量、扩散、静电、电动力学、热力学、流体动力学、弹性、广义相对论和量子力学(薛定谔方程、保利方程等)的基础性认识。它们也产生于许多纯粹的数学考虑,如微分几何和变分计算;在其他值得注意的应用中,它们是几何拓扑学中证明庞加莱猜想的基本工具。

my-assignmentexpert™ 偏微分方程Partial Differential Equations作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的偏微分方程Partial Differential Equations作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此偏微分方程Partial Differential Equations作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的偏微分方程Partial Differential Equations代写服务。我们的专家在数学Mathematics代写方面经验极为丰富,各种偏微分方程Partial Differential Equations相关的作业也就用不着 说。

我们提供的偏微分方程Partial Differential Equations及其相关学科的代写,服务范围广, 其中包括但不限于:

调和函数 harmonic function

椭圆方程 elliptic equation

抛物方程 Parabolic equation

双曲方程 Hyperbolic equation

非线性方法 nonlinear method

变分法 Calculus of Variations

几何分析 geometric analysis

偏微分方程数值解 Numerical solution of partial differential equations

数学代写|偏微分方程作业代写Partial Differential Equations代考|The Method of Characteristics, Part III: General First-Order Equations

数学代写|偏微分方程作业代写Partial Differential Equations代考|The Notation

The Notation. Your biggest foe in following this section is notation. If you can be in control of the notation and not let it get the better hand (i.e., confuse you to no end), you will be fine. The independent variables will be denoted by $x_{1}, \ldots, x_{N}$. We use $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ to denote the full vector of independent variables which will lie in some potentially unbounded domain of $\mathbb{R}^{N}$. Perhaps, in an application, we would want to treat one of the independent variables as a temporal variable $t$; however, here for ease of notation, let us here simply denote all independent variables by $x_{i}$. We will look for a solution $u\left(x_{1}, \ldots, x_{N}\right)$ defined on some domain $\Omega \subset \mathbb{R}^{N}$ with data $g(\mathbf{x})$ supplied on some subset $\Gamma$ of the boundary of $\Omega$. Since $\Omega$ is $N$-dimensional, $\Gamma$ will be $(N-1)$-dimensional.

We must write down a generic form of the most general first-order PDE. This might seem like a mess but it is actually very easy. We write the equation involving the independent variables, the dependent variable $u$, and its first-order partial derivatives simply as
$$
F(\nabla u(\mathbf{x}), u(\mathbf{x}), \mathbf{x})=0
$$
for some choice of $C^{1}$ function $F: \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$. The unknown solution $u\left(x_{1}, \ldots, x_{N}\right)$ will solve (2.28) at all $\mathbf{x}$ in its domain and satisfy $u(\mathbf{x})=g(\mathbf{x})$ on $\Gamma$.

It is convenient to denote the first two arguments of the function $F$ with variables $\mathbf{p}$ and $z$, respectively, where $\mathbf{p}$ denotes a vector in $\mathbb{R}^{N}$. For the PDE, we input $\nabla u(\mathbf{x})$ for $\mathbf{p}$ and $u(\mathbf{x})$ for $z$. Thus, we may write the PDE simply as
$$
F(\mathbf{p}, z, \mathbf{x})=0 .
$$
Note that a particular PDE is equivalent to specifying the function $F$. Hence, for a particular PDE, $F$ and its partial derivatives with respect to $p_{i}, z$ and $x_{i}$ are either given or can be readily computed. For example, the quasilinear PDE for $u\left(x_{1}, x_{2}, x_{3}\right)$
$$
u u_{x_{1}}+u_{x_{1}} u_{x_{2}}+x_{1} u_{x_{3}}+u^{3}=x_{2} x_{3}
$$
is equivalent to (2.29) with
$$
F(\mathbf{p}, z, \mathbf{x})=F\left(p_{1}, p_{2}, p_{3}, z, x_{1}, x_{2}, x_{3}\right)=z p_{1}+p_{1} p_{2}+x_{1} p_{3}+z^{3}-x_{2} x_{3} .
$$

数学代写|偏微分方程作业代写Partial Differential Equations代考|The Characteristic Equations

We proceed as before by parametrizing curves in the domain $\Omega$ of the solution by $s$. These characteristic curves (the projective characteristics) are denoted by $\mathbf{x}(s)$ and have components
$$
\mathbf{x}(s)=\left(x_{1}(s), \ldots, x_{N}(s)\right), \quad s \in \mathbb{R} .
$$
We will also denote derivatives with respect to $s$ as a dot above the variable. Assume that we have a $C^{2}$ solution $u$ to the PDE (2.28) on a domain $\Omega$. Consistent with our previous notation, define $z(s)$ and $\mathbf{p}(s)$ to denote, respectively, the values of the solution and the gradient of the solution along a characteristic $\mathbf{x}(s)$; i.e.,
$$
z(s):=u(\mathbf{x}(s)) \quad \text { and } \quad \mathbf{p}(s):=\nabla u(\mathbf{x}(s)) .
$$
Note again that $z(s)$ is scalar-valued whereas $\mathbf{p}(s)$ is vector-valued. We denote the component functions as
$$
\mathbf{p}(s)=\left(p_{1}(s), \ldots, p_{N}(s)\right) .
$$
The reader might wonder why we have introduced the new characteristic curves $p_{i}$ which keep track of partial derivatives along the projected characteristics $\mathbf{x}(s)$. In the previous cases of linear and quasilinear equations, we only needed $z(s)$ and $\mathbf{x}(s)$. However, for nonlinear equations the direction in which the projected characteristics should move can be tied to components of $\nabla u$. Hence it is imperative that we keep them in the picture.

数学代写|偏微分方程作业代写PARTIAL DIFFERENTIAL EQUATIONS代考|Linear and Quasilinear Equations in 𝑁 independent variables

The previous cases of linear, semilinear, and quasilinear equations all fall into our general framework. In fact, now we can consider these equations in $N$ independent variables, denoted here by the vector $\mathbf{x}$.
A general linear equation takes the form
$$
F(\nabla u, u, \mathbf{x})=\mathbf{a}(\mathbf{x}) \cdot \nabla u(\mathbf{x})+b(\mathbf{x}) u(\mathbf{x})+c(\mathbf{x})=0,
$$
for some vector-valued function $\mathbf{a}$ and scalar-valued functions $b$ and $c$ of $\mathbf{x}$. In our notation, we have
$$
F(\mathbf{p}, z, \mathbf{x})=\mathbf{a}(\mathbf{x}) \cdot \mathbf{p}+b(\mathbf{x}) z+c(\mathbf{x})
$$
which means $\nabla_{\mathbf{p}} F=\mathbf{a}(\mathbf{x})$. Hence the characteristic equations (2.36) for $\mathbf{x}$ and $z$ are
$$
\dot{\mathbf{x}}(s)=\mathbf{a}(\mathbf{x}(s)), \quad \dot{z}(s)=\mathbf{a}(\mathbf{x}(s)) \cdot \mathbf{p}(s) .
$$
However, the PDE tells us that $\mathbf{a}(\mathbf{x}(s)) \cdot \mathbf{p}(s)=-b(\mathbf{x}(s)) z(s)-c(\mathbf{x}(s))$. Hence, the $z$ and $\mathbf{x}$ equations form a closed system
$$
\left{\begin{array}{l}
\dot{\mathbf{x}}(s)=\mathbf{a}(\mathbf{x}(s)), \
\dot{z}(s)=-b(\mathbf{x}(s)) z(s)-c(\mathbf{x}(s)),
\end{array}\right.
$$
and we do not need $\mathbf{p}$ or its equations to find $u$. Of course, one could write down the $\mathbf{p}$ equations but they would be redundant and will be automatically satisfied by the solution $u$ along the characteristics $\mathbf{x}$. A very important observation about the ODEs for $z$ and $\mathbf{x}$ in (2.37) is that they are decoupled; we can first solve for $\mathbf{x}(s)$ and then solve for $z(s)$. Another way of saying this is that the structure of the PDE alone (i.e., the function $F)$ tells us exactly what the characteristics $\mathbf{x}(s)$ are.

数学代写|偏微分方程作业代写Partial Differential Equations代考|The Method of Characteristics, Part III: General First-Order Equations

偏微分方程代写

数学代写|偏微分方程作业代写PARTIAL DIFFERENTIAL EQUATIONS代考|THE NOTATION

符号。遵循本节的最大敌人是符号。如果您可以控制符号并且不让它变得更好一世.和.,C这nF在s和是这在吨这n这和nd, 你会好起来的。自变量将表示为X1,…,Xñ. 我们用X=(X1,…,Xñ)表示将位于某个潜在无界域中的自变量的完整向量Rñ. 也许,在应用程序中,我们希望将其中一个自变量视为时间变量吨; 然而,这里为了便于记号,让我们在这里简单地表示所有自变量X一世. 我们将寻找解决方案在(X1,…,Xñ)在某个域上定义Ω⊂Rñ有数据G(X)在某个子集上提供Γ的边界Ω. 自从Ω是ñ维度,Γ将会(ñ−1)维。

我们必须写出最一般的一阶 PDE 的一般形式。这可能看起来像一团糟,但实际上很容易。我们写出涉及自变量的方程,因变量在, 及其一阶偏导数简写为
F(∇在(X),在(X),X)=0
对于一些选择C1功能F:Rñ×R×Rñ→R. 未知的解决方案在(X1,…,Xñ)将解决2.28根本X在其领域内并满足在(X)=G(X)在Γ.

表示函数的前两个参数很方便F有变量p和和,分别在哪里p表示向量Rñ. 对于 PDE,我们输入∇在(X)为了p和在(X)为了和. 因此,我们可以将 PDE 简单地写为
F(p,和,X)=0.
请注意,特定的 PDE 等效于指定函数F. 因此,对于特定的 PDE,F及其偏导数p一世,和和X一世要么是给定的,要么可以很容易地计算出来。例如,拟线性 PDE 为在(X1,X2,X3)
在在X1+在X1在X2+X1在X3+在3=X2X3
相当于2.29和
F(p,和,X)=F(p1,p2,p3,和,X1,X2,X3)=和p1+p1p2+X1p3+和3−X2X3.

数学代写|偏微分方程作业代写PARTIAL DIFFERENTIAL EQUATIONS代考|THE CHARACTERISTIC EQUATIONS

我们像以前一样通过参数化域中的曲线来进行Ω的解决方案s. 这些特性曲线吨H和pr这j和C吨一世在和CH一种r一种C吨和r一世s吨一世Cs表示为X(s)并且有组件
X(s)=(X1(s),…,Xñ(s)),s∈R.
我们还将表示关于s作为变量上方的一个点。假设我们有一个C2解决方案在到 PDE2.28在一个域上Ω. 与我们之前的符号一致,定义和(s)和p(s)分别表示解的值和解沿特征的梯度X(s); IE,
和(s):=在(X(s)) 和 p(s):=∇在(X(s)).
再次注意和(s)是标量值,而p(s)是向量值的。我们将组件函数表示为
p(s)=(p1(s),…,pñ(s)).
读者可能想知道为什么我们引入了新的特性曲线p一世跟踪投影特征的偏导数X(s). 在之前的线性和拟线性方程的情况下,我们只需要和(s)和X(s). 然而,对于非线性方程,投影特征应该移动的方向可以与∇在. 因此,我们必须将它们保留在图片中。

数学代写|偏微分方程作业代写PARTIAL DIFFERENTIAL EQUATIONS代考|LINEAR AND QUASILINEAR EQUATIONS IN 𝑁 INDEPENDENT VARIABLES

以前的线性、半线性和拟线性方程的情况都属于我们的一般框架。事实上,现在我们可以考虑这些方程ñ自变量,这里用向量表示X.
一般线性方程采用以下形式
F(∇在,在,X)=一种(X)⋅∇在(X)+b(X)在(X)+C(X)=0,
对于一些向量值函数一种和标量值函数b和C的X. 在我们的符号中,我们有
F(p,和,X)=一种(X)⋅p+b(X)和+C(X)
意思是∇pF=一种(X). 因此特征方程2.36为了X和和是
X˙(s)=一种(X(s)),和˙(s)=一种(X(s))⋅p(s).
但是,PDE 告诉我们一种(X(s))⋅p(s)=−b(X(s))和(s)−C(X(s)). 因此,和和X方程形成一个封闭系统
$$
\left{X˙(s)=一种(X(s)), 和˙(s)=−b(X(s))和(s)−C(X(s)),\对。
$$
我们不需要p或其方程式要找到在. 当然,也可以写下p方程,但它们是多余的,并且会被解自动满足在顺着特点X. 关于 ODE 的一个非常重要的观察和和X在2.37是它们是解耦的;我们可以先解决X(s)然后解决和(s). 另一种说法是仅 PDE 的结构一世.和.,吨H和F在nC吨一世这n$F吨和lls在s和X一种C吨l是在H一种吨吨H和CH一种r一种C吨和r一世s吨一世Cs\mathbf{x}s美元是。

数学代写|偏微分方程作业代写Partial Differential Equations代考

数学代写|偏微分方程作业代写Partial Differential Equations代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

概率论代考

离散数学代写

集合论数理逻辑代写案例

时间序列分析代写

离散数学网课代修

Related Posts

Leave a comment