Scroll Top
19th Ave New York, NY 95822, USA

数学代写|网络安全作业代写network security代考|Computational Security

如果你也在 怎样代写网络安全network security这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。网络安全network security是一套技术,通过防止各种潜在威胁进入或在网络中扩散,来保护公司基础设施的可用性和完整性。

网络安全network security一个网络安全架构是由保护网络本身和在网络上运行的应用程序的工具组成。有效的网络安全策略采用了可扩展和自动化的多道防线。每个防御层都执行一套由管理员决定的安全策略。

my-assignmentexpert™ 网络安全network security作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的网络安全network security作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此网络安全network security作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的网络安全network security代写服务。我们的专家在数学Mathematics代写方面经验极为丰富,各种网络安全network security相关的作业也就用不着 说。

我们提供的网络安全network security及其相关学科的代写,服务范围广, 其中包括但不限于:

非线性方法 nonlinear method functional analysis

变分法 Calculus of Variations

数学代写|网络安全作业代写network security代考|Computational Security

数学代写|网络安全作业代写network security代考|The Concrete Approach

The concrete approach to computational security quantifies the security of a cryptographic scheme by explicitly bounding the maximum success probability of a (randomized) adversary running for some specified amount of time or, more precisely, investing some specified amount of computational effort. Thus, a concrete definition of security takes the following form:
A scheme is $(t, \varepsilon)$-secure if any adversary running for time at most $t$ succeeds in breaking the scheme with probability at most $\varepsilon$.
(Of course, the above serves only as a general template, and for it to make sense we need to define exactly what it means to “break” the scheme in question.) As an example, one might have a scheme with the guarantee that no adversary running for at most 200 years using the fastest available supercomputer can succeed in breaking the scheme with probability better than $2^{-60}$. Or, it may be more convenient to measure running time in terms of CPU cycles, and to construct a scheme such that no adversary using at most $2^{80}$ cycles can break the scheme with probability better than $2^{-60}$.

It is instructive to get a feel for the large values of $t$ and the small values of $\varepsilon$ that are typical of modern cryptosystems.

数学代写|网络安全作业代写network security代考|The Asymptotic Approach

As partly noted above, there are some technical and theoretical difficulties in using the concrete-security approach. These issues must be dealt with in practice but when describing schemes abstractly (as we do in this book) it is convenient instead to use an asymptotic approach. This approach, rooted in complexity theory, introduces an integer-valued security parameter (denoted by $n$ ) that parameterizes both cryptographic schemes as well as all involved parties (i.e., the honest parties as well as the attacker). When honest parties use a scheme (e.g., when they generate a key), they choose some value for the security parameter; for the purposes of this discussion, one can view the security parameter as corresponding to the length of the key. We also view the running time of the adversary, as well as its success probability, as functions of the security parameter rather than as fixed, concrete values. Then:

  1. We equate “efficient adversaries” with randomized (i.e., probabilistic) algorithms running in time polynomial in $n$. This means there is some polynomial $p$ such that the adversary runs for time at most $p(n)$ when the security parameter is $n$. We also require-for real-world efficiencythat honest parties run in polynomial time, although we stress that the adversary may be much more powerful (and run much longer) than the honest parties.
  2. We equate the notion of “small probabilities of success” with success probabilities smaller than any inverse polynomial in $n$. (See Definition 3.4.) Such probabilities are called negligible.
数学代写|网络安全作业代写network security代考|Computational Security

网络安全作业代写

数学代写|网络安全作业代写NETWORK SECURITY代考|THE CONCRETE APPROACH

计算安全性的具体方法通过明确限制密码方案的最大成功概率来量化密码方案的安全性。r一种nd这米一世和和d攻击者运行了特定的时间,或者更准确地说,投入了特定的计算量。因此,安全性的具体定义采用以下形式:
方案是(吨,e)- 安全,如果任何对手最多运行时间吨最多以概率成功破案e.
这FC这在rs和,吨H和一种b这在和s和r在和s这nl是一种s一种G和n和r一种l吨和米pl一种吨和,一种ndF这r一世吨吨这米一种ķ和s和ns和在和n和和d吨这d和F一世n和和X一种C吨l是在H一种吨一世吨米和一种ns吨这“br和一种ķ”吨H和sCH和米和一世nq在和s吨一世这n.举个例子,一个人可能有一个计划,保证没有一个对手使用最快的可用超级计算机运行最多 200 年可以成功地打破该计划的概率比2−60. 或者,根据 CPU 周期来衡量运行时间可能更方便,并构建一个最多没有对手使用的方案280循环可以比2−60.

感受一下吨和小的值e这是现代密码系统的典型特征。

数学代写|网络安全作业代写NETWORK SECURITY代考|THE ASYMPTOTIC APPROACH

如上所述,使用具体安全方法存在一些技术和理论困难。这些问题必须在实践中处理,但在抽象描述方案时一种s在和d这一世n吨H一世sb这这ķ相反,使用渐近方法更方便。这种植根于复杂性理论的方法引入了一个整数值安全参数d和n这吨和db是$n$参数化加密方案以及所有相关方一世.和.,吨H和H这n和s吨p一种r吨一世和s一种s在和ll一种s吨H和一种吨吨一种Cķ和r. 当诚实方使用方案时和.G.,在H和n吨H和是G和n和r一种吨和一种ķ和是,他们为安全参数选择一些值;出于讨论的目的,可以将安全参数视为对应于密钥的长度。我们还将对手的运行时间及其成功概率视为安全参数的函数,而不是固定的具体值。然后:

  1. 我们将“有效对手”等同于随机一世.和.,pr这b一种b一世l一世s吨一世C算法在时间多项式中运行n. 这意味着有一些多项式p使得对手最多运行时间p(n)当安全参数为n. 我们还要求诚实方在多项式时间内运行的真实世界效率,尽管我们强调对手可能更强大一种ndr在n米在CHl这nG和r比诚实的当事人。
  2. 我们将“小成功概率”的概念等同于小于任何逆多项式的成功概率n. 小号和和D和F一世n一世吨一世这n3.4.这样的概率被称为可忽略的。
数学代写|网络安全作业代写network security代考

数学代写|网络安全作业代写network security代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

概率论代考

离散数学代写

集合论数理逻辑代写案例

时间序列分析代写

离散数学网课代修

Leave a comment