如果你也在 怎样代写数值方法numerical methods这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数值方法numerical methods在数值分析中,数值方法是一种旨在解决数值问题的数学工具。在编程语言中,带有适当收敛检查的数值方法的实现被称为数值算法。
数值方法numerical methods数值分析是研究使用数值逼近(相对于符号操作)来解决数学分析问题的算法(有别于离散数学)。数值分析在工程和物理科学的所有领域都有应用,在21世纪还包括生命科学和社会科学、医学、商业甚至艺术领域。目前计算能力的增长使得更复杂的数值分析得以使用,在科学和工程中提供详细和现实的数学模型。数值分析的例子包括:天体力学中的常微分方程(预测行星、恒星和星系的运动),数据分析中的数值线性代数,以及用于模拟医学和生物学中活细胞的随机微分方程和马尔科夫链。
my-assignmentexpert™数值方法numerical methods作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的数值方法numerical methods作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此数值方法numerical methods作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在数值方法numerical methods代写方面经验极为丰富,各种数值方法numerical methods相关的作业也就用不着 说。
我们提供的数值方法numerical methods及其相关学科的代写,服务范围广, 其中包括但不限于:
数学代写|数值方法作业代写numerical methods代考|Description of the Model
We assume that at the aggregate level, the available technology can be represented by a first-degree homogeneous production function $Y=F\left(K_{t}, N_{t}\right)$. As explained above, we identify employment with total population. Derivatives are: $F_{K_{t}}, F_{N_{t}}$, $F_{K_{t} N_{t}}>0, F_{N_{t} N_{t}}, F_{K_{t} K_{t}}<0$ and the Hessian is negative definite, so that $F$ is concave. We further assume: $F\left(K_{t}, 0\right)=F\left(0, N_{t}\right)=0$, so that we cannot produce anything without using positive amounts of the two inputs, and $\lim {K{t} \rightarrow 0} F_{K_{t}}=$ $\lim {N{t} \rightarrow 0} F_{N_{t}}=\infty, \lim {K{t} \rightarrow \infty} F_{K_{t}}=\lim {N{t} \rightarrow \infty} F_{N_{t}}=0$. These are usually known as Inada conditions.
The more restrictive aspect of this technology is the existence of decreasing returns to scale in each input, which, as we saw in Case 1 in the previous section, precludes the possibility of positive steady-state growth. The aggregate constant returns to scale assumption allows us to write,
$$
Y_{t}=F\left(K_{t}, N_{t}\right)=N_{t} F\left(K_{t} / N_{t}, 1\right)=N_{t} f\left(k_{t}\right)
$$
where $k_{t}=K_{t} / N_{t}$ denotes the per capita stock of productive capital or capital-labor ratio, and $f\left(k_{t}\right)=F\left(K_{t} / N_{t}, 1\right)$. The assumptions on $F$ imply: $f^{\prime}\left(k_{t}\right)>0, f^{\prime \prime}\left(k_{t}\right)<0, f(0)=0, \lim {k{t} \rightarrow 0} f^{\prime}=\infty, \lim {k{t} \rightarrow \infty} f^{\prime}=0 .$
数学代写|数值方法作业代写numerical methods代考|The Dynamics of the Economy
In this simple economy, output (or, equivalently, income) is used either as consumption or in the form of gross investment. The later is used in part to compensate for depreciated capital, and also as net additions to the stock of capital,
$$
\begin{aligned}
\text { Net investment } &=\dot{K}{t}=\frac{d K{t}}{d t}=\text { Gross investment }-\text { Depreciation } \
&=I_{t}-D_{t}=I_{t}-\delta K_{t},
\end{aligned}
$$
where we have used the assumption on a constant rate $\delta$ of physical capital depreciation, independent of the stock of capital, $D_{t}=\delta K_{t}$.
So, we have the global constraint of resources:
$$
Y_{t}=C_{t}+I_{t}=C_{t}+\dot{K}{t}+\delta K{t},
$$
that is,
$$
\dot{K}{t}=F\left(K{t}, N_{t}\right)-C_{t}-\delta K_{t}
$$
数学代写|数值方法作业代写NUMERICAL METHODS代考|Steady-State
n an exogenous growth economy, a steady-state is a vector of values for the rates of growth of the main variables physical capital, output and consumption in units of effective labor, that if it is ever reached, it can be maintained constant forever.
A steady-state is often referred to as a long-run equilibrium, because of the characteristic of having a constant rate of growth for appropriately defined variables.
Let us consider again the economy’s law of motion $(2.19)$, from which the growth rate of capital can be written,
$$
\gamma_{k_{t}}=\frac{\dot{k}{t}}{k{t}}=s \frac{f\left(k_{t}\right)}{k_{t}}-(n+\delta+\gamma)
$$
数值方法代写
数学代写|数值方法作业代写NUMERICAL METHODS代考|DESCRIPTION OF THE MODEL
我们假设在总体水平上,可用技术可以用一级同质生产函数表示是=F(ķ吨,ñ吨). 如上所述,我们用总人口来确定就业。衍生品有:Fķ吨,Fñ吨, Fķ吨ñ吨>0,Fñ吨ñ吨,Fķ吨ķ吨<0并且 Hessian 是负定的,所以F是凹的。我们进一步假设:F(ķ吨,0)=F(0,ñ吨)=0,所以如果不使用两个输入的正数,我们就无法产生任何东西,并且 $\lim {K {t} \rightarrow 0} F_{K_{t}}=\lim {N {t} \rightarrow 0} F_{N_{t}}=\infty, \lim {K {t} \rightarrow \infty} F_{K_{t}}=\lim {N {t} \ rightarrow \infty} F_{N_{t}}=0$。这些通常被称为稻田条件。
该技术更具限制性的方面是每个投入都存在规模收益递减,正如我们在上一节的案例 1 中所看到的,这排除了正稳态增长的可能性。总规模收益不变假设允许我们写,
是吨=F(ķ吨,ñ吨)=ñ吨F(ķ吨/ñ吨,1)=ñ吨F(ķ吨)
在哪里ķ吨=ķ吨/ñ吨表示人均生产资本存量或资本-劳动力比率,并且F(ķ吨)=F(ķ吨/ñ吨,1). 上的假设F暗示:$f^{\prime}\leftk_{t}\对k_{t}\对>0, f^{\素数\素数}\左k_{t}\对k_{t}\对<0, f0=0, \lim {k {t} \rightarrow 0} f^{\prime}=\infty, \lim {k {t} \rightarrow \infty} f^{\prime}=0 .$
数学代写|数值方法作业代写NUMERICAL METHODS代考|THE DYNAMICS OF THE ECONOMY
在这个简单的经济中,产出这r,和q在一世在一种l和n吨l是,一世nC这米和被用作消费或以总投资的形式使用。后者部分用于补偿折旧的资本,也作为资本存量的净增加,
$$
\begin{aligned}
\text { Net investment } &=\dot{K}{t}=\frac{d K{t}}{d t}=\text { Gross investment }-\text { Depreciation } \
&=I_{t}-D_{t}=I_{t}-\delta K_{t},
\end{aligned}
$$
其中,我们使用了关于恒定速率的假设 $\delta$ of physical capital depreciation, independent of the stock of capital, $D_{t}=\delta K_{t}$.
因此,我们有资源的全球约束。
$$
Y_{t}=C_{t}+I_{t}=C_{t}+\dot{K}{t}+\delta K{t},
$$
that is,
$$
\dot{K}{t}=F\left(K{t}, N_{t}\right)-C_{t}-\delta K_{t}
$$
数学代写|数值方法作业代写NUMERICAL METHODS代考|STEADY-STATE
在外生增长经济中,稳态是主要变量实物资本、产出和有效劳动单位消费增长率的值向量,如果达到,它可以永远保持不变。
稳态通常被称为长期均衡,因为对于适当定义的变量具有恒定增长率的特征。
让我们再考虑一下经济运动定律(2.19),由此可以写出资本的增长率,
$$
\gamma_{k_{t}}=\frac{\dot{k} {t}}{k {t}}=s \frac{f\leftk_{t}\对k_{t}\对}{k_{t}}-n+d+C
$$
数学代写|数值方法作业代写numerical methods代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。