19th Ave New York, NY 95822, USA

# 金融代写|风险理论投资组合代写MARKET RISK, MEASURES AND PORTFOLIO代考|JOINT PROBABILITY DISTRIBUTIONS

my-assignmentexpert™风险理论投资组合Market Risk, Measures and Portfolio作业代写，免费提交作业要求， 满意后付款，成绩80\%以下全额退款，安全省心无顾虑。专业硕 博写手团队，所有订单可靠准时，保证 100% 原创。my-assignmentexpert™， 最高质量的风险理论投资组合Market Risk, Measures and Portfolio作业代写，服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面，考虑到同学们的经济条件，在保障代写质量的前提下，我们为客户提供最合理的价格。 由于统计Statistics作业种类很多，同时其中的大部分作业在字数上都没有具体要求，因此风险理论投资组合Market Risk, Measures and Portfolio作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

my-assignmentexpert™ 为您的留学生涯保驾护航 在金融Financial作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的金融Financial代写服务。我们的专家在风险理论投资组合Market Risk, Measures and Portfolio代写方面经验极为丰富，各种风险理论投资组合Market Risk, Measures and Portfolio相关的作业也就用不着 说。

## 金融代写|风险理论投资组合代写MARKET RISK, MEASURES AND PORTFOLIO代考|Conditional Probability

A useful concept in understanding the relationship between multiple random variables is that of conditional probability. Consider the returns on the stocks of two companies in one and the same industry. The future return $X$ on the stocks of company 1 is not unrelated to the future return $Y$ on the stocks of company 2 because the future development of the two companies is driven to some extent by common factors since they are in one and the same industry. It is a reasonable question to ask, what is the probability that the future return $X$ is smaller than a given percentage, e.g. $X \leq-2 \%$, on condition that $Y$ realizes a huge loss, e.g. $Y \leq-10 \%$ ? Essentially, the conditional probability is calculating the probability of an event provided that another event happens. If we denote the first event by $A$ and the second event by $B$, then the conditional probability of $A$ provided that $B$ happens, denoted by $P(A \mid B)$, is given by the formula,
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$$

## 金融代写|风险理论投资组合代写MARKET RISK, MEASURES AND PORTFOLIO代考|Definition of Joint Probability Distributions

A portfolio or a trading position consists of a collection of financial assets. Thus, portfolio managers and traders are interested in the return on a portfolio or a trading position. Consequently, in real-world applications, the interest is in the joint probability distribution or joint distribution of more than one random variable. For example, suppose that a portfolio consists of a position in two assets, asset 1 and asset 2 . Then there will be a probability distribution for (1) asset $1,(2)$ asset 2 , and (3) asset 1 and asset 2. The first two distributions are referred to as the marginal probability distributions or marginal distributions. The distribution for asset 1 and asset 2 is called the joint probability distribution.

Like in the univariate case, there is a mathematical connection between the probability distribution $P$, the cumulative distribution function $F$, and the density function $f$ of a multivariate random variable (also called a random vector) $X=\left(X_{1}, \ldots, X_{n}\right)$. The formula looks similar to the equation we presented in the previous chapter showing the mathematical connection between a probability density function, a probability distribution, and a cumulative distribution function of some random variable $X$ :
\begin{aligned} P\left(X_{1} \leq t_{1}, \ldots, X_{n} \leq t_{n}\right) &=F_{X}\left(t_{1}, \ldots, t_{n}\right) \ &=\int_{-\infty}^{t_{1}} \ldots \int_{-\infty}^{t_{n}} f_{X}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \end{aligned}

## 金融代写|风险理论投资组合代写Market Risk, Measures and Portfolio代考|Dependence of Random Variables

Typically, when considering multivariate distributions, we are faced with inference between the distributions; that is, large values of one random variable imply large values of another random variable or small values of a third random variable. If we are considering, for example, $X_{1}$, the height of a randomly chosen U.S. citizen, and $X_{2}$, the weight of this citizen, then large values of $X_{1}$ tend to result in large values of $X_{2}$. This property is denoted as the dependence of random variables and a powerful concept to measure dependence will be introduced in a later section on copulas.

The inverse case of no dependence is denoted as stochastic independence. More precisely, two random variables are independently distributed if and only if their joint distribution given in terms of the joint cumulative distribution function $F$ or the joint density function $f$ equals the product of their marginal distributions:
and
\begin{aligned} &F_{X}\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \ldots F_{X_{n}}\left(x_{n}\right) \ &f_{X}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \ldots f_{X_{n}}\left(x_{n}\right) \end{aligned}

## 金融代写|风险理论投资组合代写MARKET RISK, MEASURES AND PORTFOLIO代考|DEPENDENCE OF RANDOM VARIABLES

FX(X1,…,Xn)=FX1(X1)…FXn(Xn) FX(X1,…,Xn)=FX1(X1)…FXn(Xn)

## Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。