如果你也在 怎样代写信息论information theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。信息论information theory是对数字信息的量化、存储和通信的科学研究。该领域从根本上由哈里-奈奎斯特和拉尔夫-哈特利在20世纪20年代和克劳德-香农在20世纪40年代的作品建立。
信息论information theory的一个关键衡量标准是熵。熵量化了随机变量的值或随机过程的结果中所涉及的不确定性的数量。例如,确定一个公平的抛硬币的结果(有两个同样可能的结果)比确定一个掷骰子的结果(有六个同样可能的结果)提供的信息要少(熵值较低)。信息论中其他一些重要的衡量标准是相互信息、信道容量、误差指数和相对熵。信息论的重要子领域包括源编码、算法复杂性理论、算法信息论和信息论安全。
my-assignmentexpert™信息论information theory代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的信息论information theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此信息论information theory作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在信息论information theory代写方面经验极为丰富,各种信息论information theory相关的作业也就用不着 说。
我们提供的信息论information theory及其相关学科的代写,服务范围广, 其中包括但不限于:
数学代写|信息论作业代写information theory代考|A first inference problem
When I was an undergraduate in Cambridge, I was privileged to receive supervisions from Steve Gull. Sitting at his desk in a dishevelled office in St. John’s College, I asked him how one ought to answer an old Tripos question (exercise 3.3):
Unstable particles are emitted from a source and decay at a distance $x$, a real number that has an exponential probability distribution with characteristic length $\lambda$. Decay events can only be observed if they occur in a window extending from $x=1 \mathrm{~cm}$ to $x=20 \mathrm{~cm} . N$ decays are observed at locations $\left{x_{1}, \ldots, x_{N}\right}$. What is $\lambda$ ?
I had scratched my head over this for some time. My education had provided me with a couple of approaches to solving such inference problems: contructing ‘estimators’ of the unknown parameters; or ‘fitting’ the model to the data, or a processed version of the data.
数学代写|信息论作业代写information theory代考|The bent coin
A bent coin is tossed $F$ times; we observe a sequence $s$ of heads and tails (which we’ll denote by the symbols a and b). We wish to know the bias of the coin, and predict the probability that the next toss will result in a head. We first encountered this task in example $2.7$ (p. 30), and we will encounter it again in Chapter 6 , when we discuss adaptive data compression. It is also the original inference problem studied by Thomas Bayes in his essay published in 1763 .
We will assume a uniform prior distribution and obtain a posterior distribution by multiplying by the likelihood. A critic might object, ‘where did this prior come from?’ I will not claim that the uniform prior is in any way fundamental; indeed we’ll give examples of nonuniform priors later. The prior is a subjective assumption. One of the themes of this book is:
you can’t do inference – or data compression – without making assumptions.
We give the name $\mathcal{H}{1}$ to our assumptions. [We’ll be introducing an alternative set of assumptions in a moment.] The probability, given $p{\mathrm{a}}$, that $F$ tosses result in a sequence $s$ that contains $\left{F_{\mathrm{a}}, F_{\mathrm{b}}\right}$ counts of the two outcomes is
$$
P\left(\mathbf{s} \mid p_{\mathrm{a}}, F, \mathcal{H}{1}\right)=p{\mathrm{a}}^{F_{\mathrm{a}}}\left(1-p_{\mathrm{a}}\right)^{F_{\mathrm{b}}}
$$
数学代写|信息论作业代写INFORMATION THEORY代考|The bent coin and model comparison
Imagine that a scientist introduces another theory for our data. He asserts that the source is not really a bent coin but is really a perfectly formed die with one face painted heads (‘ $a$ ‘) and the other five painted tails (‘b’). Thus the parameter $p_{\mathrm{a}}$, which in the original model, $\mathcal{H}{1}$, could take any value between 0 and 1 , is according to the new hypothesis, $\mathcal{H}{0}$, not a free parameter at all; rather, it is equal to $1 / 6$. [This hypothesis is termed $\mathcal{H}_{0}$ so that the suffix of each model indicates its number of free parameters.]
How can we compare these two models in the light of data? We wish to infer how probable $\mathcal{H}{1}$ is relative to $\mathcal{H}{0}$.
In order to perform model comparison, we write down Bayes’ theorem again, but this time with a different argument on the left-hand side. We wish to know how probable $\mathcal{H}{1}$ is given the data. By Bayes’ theorem, $$ P\left(\mathcal{H}{1} \mid \mathbf{s}, F\right)=\frac{P\left(\mathbf{s} \mid F, \mathcal{H}{1}\right) P\left(\mathcal{H}{1}\right)}{P(\mathbf{s} \mid F)}
$$
信息论代考
数学代写|信息论作业代写INFORMATION THEORY代考|A FIRST INFERENCE PROBLEM
当我在剑桥读本科时,我有幸接受了 Steve Gull 的指导。在圣约翰学院一个凌乱的办公室里,我坐在他的办公桌前,问他应该如何回答一个古老的 Tripos 问题和X和rC一世s和3.3:
不稳定的粒子从源发射并在远处衰减X,具有特征长度的指数概率分布的实数λ. 只有当衰减事件发生在从X=1 C米至X=20 C米.ñ在位置观察到衰变\left{x_{1}, \ldots, x_{N}\right}\left{x_{1}, \ldots, x_{N}\right}. 什么是λ ?
我已经为此挠头了一段时间。我的教育为我提供了几种解决此类推理问题的方法:构建未知参数的“估计器”;或将模型“拟合”到数据或数据的处理版本。
数学代写|信息论作业代写INFORMATION THEORY代考|THE BENT COIN
一枚弯曲的硬币被抛F次;我们观察一个序列s头尾在H一世CH在和′lld和n这吨和b是吨H和s是米b这ls一个一个ndb. 我们希望知道硬币的偏向,并预测下一次抛硬币正面朝上的概率。我们在示例中第一次遇到这个任务2.7 p.30,我们将在第 6 章讨论自适应数据压缩时再次遇到它。这也是托马斯·贝叶斯在 1763 年发表的论文中研究的原始推理问题。
我们将假设一个均匀的先验分布,并通过乘以似然来获得后验分布。批评者可能会反对,“这个先验是从哪里来的?” 我不会声称统一先验在任何方面都是基本的。事实上,我们稍后会给出非均匀先验的例子。先验是主观假设。本书的主题之一是:
不做假设就无法进行推理或数据压缩。
我们命名为$\mathcal{H}{1}$ to our assumptions. [We’ll be introducing an alternative set of assumptions in a moment.] The probability, given $p{\mathrm{a}}$, that $F$ tosses result in a sequence $s$ that contains $\left{F_{\mathrm{a}}, F_{\mathrm{b}}\right}$ counts of the two outcomes is
$$
P\left(\mathbf{s} \mid p_{\mathrm{a}}, F, \mathcal{H}{1}\right)=p{\mathrm{a}}^{F_{\mathrm{a}}}\left(1-p_{\mathrm{a}}\right)^{F_{\mathrm{b}}}
$$
数学代写|信息论作业代写INFORMATION THEORY代考|THE BENT COIN AND MODEL COMPARISON
想象一下,一位科学家为我们的数据引入了另一种理论。他断言,源头并不是真正的弯曲硬币,而是真正成型的完美模具,上面有一个头像‘$一个$‘和其他五个画尾巴‘b′. 因此参数p一个,在原始模型中,$\mathcal{H} {1},C这在ld吨一个ķ和一个n是在一个l在和b和吨在和和n0一个nd1,一世s一个CC这rd一世nG吨这吨H和n和在H是p这吨H和s一世s,\mathcal{H} {0},n这吨一个Fr和和p一个r一个米和吨和r一个吨一个ll;r一个吨H和r,一世吨一世s和q在一个l吨这1 / 6.[吨H一世sH是p这吨H和s一世s一世s吨和r米和d\mathcal{H}_{0}$ 以便每个模型的后缀表示其自由参数的数量。]
我们如何根据数据比较这两个模型?我们希望推断$\mathcal{H}{1}$ is relative to $\mathcal{H}{0}$.
In order to perform model comparison, we write down Bayes’ theorem again, but this time with a different argument on the left-hand side. We wish to know how probable $\mathcal{H}{1}$ is given the data. By Bayes’ theorem, $$ P\left(\mathcal{H}{1} \mid \mathbf{s}, F\right)=\frac{P\left(\mathbf{s} \mid F, \mathcal{H}{1}\right) P\left(\mathcal{H}{1}\right)}{P(\mathbf{s} \mid F)}
$$
数学代写|信息论作业代写information theory代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。