物理代写|统计力学代写Statistical Mechanics代写|PHYS559 Cox’ “Axioms” and Theorem

如果你也在 怎样代写统计力学Statistical Mechanics PHYS559这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。统计力学Statistical Mechanics统计力学是一个数学框架,它将统计方法和概率理论应用于大型微观实体的集合。它不假设或假定任何自然法则,而是从这种集合体的行为来解释自然界的宏观行为。

统计力学Statistical Mechanics领域的建立一般归功于三位物理学家。路德维希-玻尔兹曼(Ludwig Boltzmann),他在微观状态的集合方面发展了对熵的基本解释。詹姆斯-克拉克-麦克斯韦,他开发了此类状态的概率分布模型吉布斯(Josiah Willard Gibbs),他在1884年创造了这个领域的名称。虽然经典热力学主要关注的是热力学平衡,但统计力学已被应用于非平衡统计力学中,以微观的方式模拟由不平衡驱动的不可逆过程的速度问题。这种过程的例子包括化学反应以及粒子和热量的流动。波动-消散定理是应用非平衡统计力学研究许多粒子系统中最简单的稳态电流流动的非平衡情况所得到的基本知识。

my-assignmentexpert™统计力学Statistical Mechanics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的统计力学Statistical Mechanics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此统计力学Statistical Mechanics作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在物理Physical代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的物理Physical代写服务。我们的专家在统计力学Statistical Mechanics代写方面经验极为丰富,各种统计力学Statistical Mechanics相关的作业也就用不着 说。

我们提供的统计力学Statistical Mechanics及其相关学科的代写,服务范围广, 其中包括但不限于:

物理代写|统计力学代写Statistical Mechanics代写|PHYS559 Cox’ “Axioms” and Theorem

物理代写|统计力学代写Statistical Mechanics代写|Cox’ “Axioms” and Theorem

As an aside, let us mention also that, in 1946, Cox [90], inspired by previous ideas of Keynes [190], gave a foundation to the “subjective” approach to probability based on reasonings about the plausibility of propositions (see Jaynes [183] for an extensive discussion of this approach). Instead of assigning probabilities to events, as in elementary probabilities, or to sets, as in the mathematical version (see Appendix 2.A), Cox gives a numerical value to the plausibility $\mathcal{P}(p \mid q)$ of a proposition $p$ given that another proposition $q$ is true. ${ }^{8}$

Then, Cox imposes some rules of rationality on those plausibility assignments and derive from them, for a given proposition $\mathrm{r}$, the sum rule:
$$
\mathcal{P}(p \text { or } q \mid r)=\mathcal{P}(p \mid r)+\mathcal{P}(q \mid r)-\mathcal{P}(p \text { and } q \mid r) \text {, }
$$
and the product rule:
$$
\mathcal{P}(p \text { and } q \mid r)=\mathcal{P}(p \mid q \text { and } r) \mathcal{P}(q \mid r)=\mathcal{P}(q \mid p \text { and } r) \mathcal{P}(p \mid r) \text {. }
$$
If we replace the propositions by sets (e.g. sets of events that render the propositions true), (2.2.3), expressed in terms of probabilities of sets, means:
$$
P(A \cup B)=P(A)+P(B)-P(A \cap B),
$$
which reduces to (2.2.1) when $p$ and $q$ are incompatible, namely when the sets $A$ and $B$ of events for which those propositions are true are disjoint; besides (2.2.5) follows by applying (2.2.1) to the disjoint union $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$ and using $A=(A \backslash B) \cup(A \cap B)$ and $B=(B \backslash A) \cup(A \cap B)$.
Equation (2.2.4), expressed in terms of probabilities of sets, means:
$$
P(A \cap B \mid C)=P(A \mid B \cap C) P(B \mid C)=P(B \mid A \cap C) P(A \mid C),
$$
where by definition,
$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$
is the conditional probability of event $A$ given event $B$.

物理代写|统计力学代写Statistical Mechanics代写|Bayesian Updating

Suppose that we have a certain number of hypotheses $H_{1}, H_{2}, \ldots, H_{n}$ and that we have assigned probabilities $P\left(H_{i}\right)$ to each of them, probabilities that exhaust all possibilities and are mutually exclusive:
$$
\sum_{i=1}^{n} P\left(H_{i}\right)=1
$$
Those probabilities are called the prior probabilities.
Now, we collect new data (D) and we want to know how to change our assignments of probabilities to those various hypotheses. We will write $P\left(H_{i} \mid D\right)$ for the (updated) probability of hypothesis $H_{i}$, given $D$.

We assume that we know enough about the system to compute the probabilities of the data, for each hypothesis: $P\left(D \mid H_{i}\right), i=1, \ldots, n$. Those probabilities are called the likelihoods.
Then we simply use Bayes’ formula:
$$
P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}
$$
where $P(D)=\sum_{i=1}^{n} P\left(D \mid H_{i}\right) P\left(H_{i}\right)$; this implies that the new probabilities still add up to one:
$$
\sum_{i=1}^{n} P\left(H_{i} \mid D\right)=1 .
$$

物理代写|统计力学代写Statistical Mechanics代写|PHYS559 Cox’ “Axioms” and Theorem

统计力学代写

物理代写|统计力学代写STATISTICAL MECHANICS代写|COX’ “AXIOMS” AND THEOREM


川顺便提一下,1946年,考克斯
90
,灵感来自㟅因斯先前的想法
190
, 为基于关于命题合理性的推理的 “主观”概率方法莤定了基础seeJaynes [183] foranextensivediscussionofthisapproach. 而不是像在基本概率中那样将概率分配给 事件,或者像在数学版本中那样分配给集合seeAppendix $2 . A, \operatorname{cox}$ 给出了合理性的数值 $\mathcal{P}(p \mid q)$ 一个命题的 $p$ 鉴于另一个命题 $q$ 是真的。
然后,对于给定的命题,考克斯将一些合理性规则强加于这些似真性分配并从中推导出 $r$ ,求和规则:
$$
\mathcal{P}(p \text { or } q \mid r)=\mathcal{P}(p \mid r)+\mathcal{P}(q \mid r)-\mathcal{P}(p \text { and } q \mid r)
$$
和产品规则:
$$
\mathcal{P}(p \text { and } q \mid r)=\mathcal{P}(p \mid q \text { and } r) \mathcal{P}(q \mid r)=\mathcal{P}(q \mid p \text { and } r) \mathcal{P}(p \mid r)
$$
如果我们用集合龶换命题e. g. setsofeventsthatrenderthepropositionstrue, 2.2.3,用集合的概率表示,意味看:
$$
P(A \cup B)=P(A)+P(B)-P(A \cap B),
$$
这减少到 $2.2 .1$ 什么时候 $p$ 和 $q$ 是不相容的,即当集合 $A$ 和 $B$ 那些命题为真的事件是不相交的;除了 2.2.5接着申请 $2.2 .1$ 到不相交的联盟 $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$ 并使用 $A=(A \backslash B) \cup(A \cap B)$ 和 $B=(B \backslash A) \cup(A \cap B)$.
方程 $2.2 .4$ ,用集合的概率表示,意味着:
$$
P(A \cap B \mid C)=P(A \mid B \cap C) P(B \mid C)=P(B \mid A \cap C) P(A \mid C)
$$
根据定义,
$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$
是事件的条件概率 $A$ 给定事件 $B$.


物理代写|统计力学代写STATISTICAL MECHANICS代 写|BAYESIAN UPDATING

假设我们有一定数量的假设 $H_{1}, H_{2}, \ldots, H_{n}$ 并且我们已经分配了概率 $P\left(H_{i}\right)$ 对他们每个人来说,用尽所有可能性并且相互排斥的概率:
$$
\sum_{i=1}^{n} P\left(H_{i}\right)=1
$$
这些概率称为先验概率。
现在,我们收集新数据 $D$ 我们相知道如何改变我们对这些不同假设的概率分配。我们会写 $P\left(H_{i} \mid D\right)$ 为了updated假设概率 $H_{i}$, 给定 $D$.
我们假设我们对系统有足够的了解来计算数据的概率,对于每个假设: $P\left(D \mid H_{i}\right), i=1, \ldots, n$. 这些概率称为可能性。 然后我们简单地使用贝叶斯公式:
$$
P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}
$$
在哪里 $P(D)=\sum_{i=1}^{n} P\left(D \mid H_{i}\right) P\left(H_{i}\right)$; 这意味着新的概率加起来仍然为 $1:$
$$
\sum_{i=1}^{n} P\left(H_{i} \mid D\right)=1 .
$$

物理代写|统计力学代写Statistical Mechanics代写

物理代写|统计力学代写Statistical Mechanics代写 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注