Scroll Top
19th Ave New York, NY 95822, USA

统计代写|非参数统计代写Nonparametric Statistics代考|ST505 Charts for the Mean

如果你也在 怎样代写非参数统计Nonparametric Statistics ST505这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。非参数统计Nonparametric Statistics是指的是一种统计方法,其中不假设数据来自于由少量参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。非参数统计有时使用的数据是顺序性的,这意味着它不依赖于数字,而是依赖于排序或排序的方式。例如,传达消费者从喜欢到不喜欢的偏好的调查将被认为是序数数据。

非参数统计Nonparametric Statistics包括非参数描述性统计、统计模型、推理和统计检验。非参数模型的模型结构不是先验的,而是由数据决定的。术语非参数化并不意味着这类模型完全没有参数,而是意味着参数的数量和性质是灵活的,不是事先固定的。直方图是概率分布的非参数估计的一个例子。

非参数统计Nonparametric Statistics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的非参数统计Nonparametric Statistics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此非参数统计Nonparametric Statistics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在统计Statistics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富,各种多元统计分析Multivariate Statistical Analysis相关的作业也就用不着 说。

统计代写|非参数统计代写Nonparametric Statistics代考|ST505 Charts for the Mean

统计代写|非参数统计代写Nonparametric Statistics代考|Charts for the Mean

Example 3.9 A Phase II Shewhart $\bar{X}$ Control Chart for the Mean When Both $\mu$ And $\sigma$ Are Unknown

Column (a) of Table $3.13$ presents some simulated data from a normal distribution, which represent measurements taken from $m=25$ independent random samples, each of size $n=5$ on a type of wafer. Suppose that these are the reference data from an IC process that were obtained after a careful Phase I analysis. The mean and the standard deviation of each reference sample are shown in Columns (b) and (c) of Table $3.13$, respectively.

The estimator of the mean $\mu$ is the mean of the Phase I sample means or the grand mean
$$
\overline{\bar{X}}=\frac{1.5119+1.4951+\cdots+1.5264}{25}=1.5056 .
$$
As noted above, the estimators $\hat{\sigma}$ used in the control limits are based on either (i) the average of the sample ranges, $\bar{R}=0.3256$ or (ii) the average of sample standard deviations, $\bar{S}=0.1316$ or the pooled estimator $S_{p}=$ $\sqrt{\frac{\sum_{i=1}^{m} S_{i}^{2}}{m}}=0.1391$. Note that all three estimators of $\sigma$ are close to each other.
The Phase II control charts for the mean are given below.
$$
\begin{aligned}
U C L &=\overline{\bar{X}}+k \frac{\hat{\sigma}}{\sqrt{n}} \
C L &=\overline{\bar{X}} \
L C L &=\overline{\bar{X}}-k \frac{\hat{\sigma}}{\sqrt{n}}
\end{aligned}
$$

统计代写|非参数统计代写Nonparametric Statistics代考|Charts for the Standard Deviation

Here we illustrate the $R$ and the $S$ charts which can be used to monitor the spread and the standard deviation, respectively. We start with an example of the Shewhart $R$ chart.

Example 3.10 A Phase II Shewhart $R$ Control Chart for the Standard Deviation in the Unknown Parameter Case

The same data that were used to illustrate the Shewhart $\bar{X}$ chart are now used to illustrate the Shewhart $R$ chart in Case U. Recall that Column (a) of Table $3.15$ presents the measurements taken from 25 independent Phase I samples on wafers that are each of size $(n=5)$ from a normal distribution. The range of each sample is shown in Column (d) of Table 3.15. For these data, $\bar{R}=0.325$. First, for $n=5$, we find from Table $\mathrm{C}$ in Appendix A that $D_{3}=0$ and $D_{4}=2.114$. Thus, with $\bar{R}=0.325$, the 3 -sigma Phase II $R$ chart control limits in Case $\mathrm{U}$ for $\sigma$ are given by $L C L=0$ and $U C L=2.114 \times 0.325=0.688$ with $C L=0.325$. However, these control limits do not properly account for parameter estimation and are not expected to be accurate unless one has a large number of Phase I data. Conversely, from Table $\mathrm{H}$ in Appendix $\mathrm{A}$, for $m=25, n=5$ and $A R L_{0}=370$, we find that $D_{3}^{}(25,5)=0.16603$ and $D_{4}^{}(25,5)=2.32788$. Hence the probability limits-based Phase II Shewhart $R$ control limits for $\sigma$, using the estimator $\bar{R} / d_{2}$, are given by $L C L=D_{3}^{}(m, n) \bar{R}=(0.16603)(0.325)=0.054$ and $U C L=D_{4}^{}(m, n) \bar{R}=(2.32788)(0.325)=0.757$, with $C L=\bar{R}=0.325$. Note that, while the $L C L$ for the 3 -sigma $R$ chart is to be reset to 0 as it is negative, the $L C L$ for the probability limits chart is positive and no such adjustment is necessary. Figure $3.25$ displays the sample ranges, $R_{i}$, of Column (b), which are plotted on a Shewhart $R$ control chart together with the control limits.

统计代写|非参数统计代写Nonparametric Statistics代考|ST505 Charts for the Mean

非参数统计代写


统计代写|非参数统计代写NONPARAMETRIC STATISTICS代 考|CHARTS FOR THE STANDARD DEVIATION


这里我们举例说明 $R$ 和 $S$ 可用于分别监控价差和标准差的图表。我们从 Shewhart 的一个例子开始 $R$ 图表。
示例 $3.10$ 第二阶段 Shewhart $R$ 末知参数情况下标准偏差的控制图
用于说明休哈特的相同数据 $\bar{X}$ 现在使用图表来说明 Shewhart $R$ 定例 $\mathrm{Q}$ 中的图表。回想该列 $a$ 表的 $3.15$ 展示了从晶圆上 25 个独立的第一阶段样本中获取的测量值,每 个样本的大小 $(n=5)$ 从正态分布。每个样本的范围显示在 Columnd表 $3.15$ 。对于这些数据, $\bar{R}=0.325$. 首先,对于 $n=5$ ,我们从表中发现 $\mathrm{C}$ 在附录 $\mathrm{A}$ 中 $D_{3}=0$ 和 $D_{4}=2.114$. 因此,与 $R=0.325,3$-sigma Phase ll $R$ 客例中的图表控制限制 U为了 $\sigma$ 由 $L C L=0$ 和 $U C L=2.114 \times 0.325=0.688$ 和 $C L=0.325$. 然而,这些
$L C L=D_{3}(m, n) \bar{R}=(0.16603)(0.325)=0.054$ 和 $U C L=D_{4}(m, n) \bar{R}=(2.32788)(0.325)=0.757$ ,和 $C L=\bar{R}=0.325$. 请注意,虽然 $L C L$ 对于 3 .
sigma $R$ 图表将被重置为 0 ,因为它是负数, $L C L$ 因为概率限制图是正数,不需要这样的调整。数字 $3.25$ 显示样本范围, $R_{i}$, 列 $b$, 绘制在 Shewhart 上 $R$ 控制图和控 制限。

如上所述,估计器 $\hat{\sigma}$ 控制限中使用的基于任一 $i$ 样本范围的平均值, $\bar{R}=0.3256$ 或者 $i i$ 样本标准差的平均值, $\bar{S}=0.1316$ 或合并估计量 $S_{p}=\sqrt{\frac{\sum_{i=1}^{m} S_{i}^{2}}{m}}=0.1391$.
请注意,所有三个估计量 $\sigma$ 彼此靠近。
$U C L=\overline{\bar{X}}+k \frac{\hat{\sigma}}{\sqrt{n}} C L \quad=\overline{\bar{X}} L C L=\overline{\bar{X}}-k \frac{\hat{\sigma}}{\sqrt{n}}$
下㘞给出了平均值的第一阶臤控制图。


统计代写|非参数统计代写NONPARAMETRIC STATISTICS代 考|CHARTS FOR THE STANDARD DEVIATION


这里我们举例说明 $R$ 和 $S$ 可用于分别监控价差和标准差的图表。我们从 Shewhart 的一个例子开始 $R$ 图表。
示例 $3.10$ 第二阶段 Shewhart $R$ 末知参数情况下标准偏差的控制图
用于说明休哈特的相同数据 $\bar{X}$ 现在使用图表来说明 Shewhart $R$ 定例 $\mathrm{Q}$ 中的图表。回想该列 $a$ 表的 $3.15$ 展示了从晶圆上 25 个独立的第一阶段样本中获取的测量值,每 个样本的大小 $(n=5)$ 从正态分布。每个样本的范围显示在 Columnd表 $3.15$ 。对于这些数据, $\bar{R}=0.325$. 首先,对于 $n=5$ ,我们从表中发现 $\mathrm{C}$ 在附录 $\mathrm{A}$ 中 $D_{3}=0$ 和 $D_{4}=2.114$. 因此,与 $R=0.325,3$-sigma Phase ll $R$ 客例中的图表控制限制 U为了 $\sigma$ 由 $L C L=0$ 和 $U C L=2.114 \times 0.325=0.688$ 和 $C L=0.325$. 然而,这些
$L C L=D_{3}(m, n) \bar{R}=(0.16603)(0.325)=0.054$ 和 $U C L=D_{4}(m, n) \bar{R}=(2.32788)(0.325)=0.757$ ,和 $C L=\bar{R}=0.325$. 请注意,虽然 $L C L$ 对于 3 .
sigma $R$ 图表将被重置为 0 ,因为它是负数, $L C L$ 因为概率限制图是正数,不需要这样的调整。数字 $3.25$ 显示样本范围, $R_{i}$, 列 $b$, 绘制在 Shewhart 上 $R$ 控制图和控 制限。

统计代写|非参数统计代写Nonparametric Statistics代考

统计代写|非参数统计代写Nonparametric Statistics代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment