19th Ave New York, NY 95822, USA

数学代写|曲线和曲面代写Curves And Surfaces代考|MATH5437 Tangent plane

my-assignmentexpert™提供最专业的一站式服务：Essay代写，Dissertation代写，Assignment代写，Paper代写，Proposal代写，Proposal代写，Literature Review代写，Online Course，Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务，拥有各个专业的博硕教师团队帮您代写，免费修改及辅导，保证成果完成的效率和质量。同时有多家检测平台帐号，包括Turnitin高级账户，检测论文不会留痕，写好后检测修改，放心可靠，经得起任何考验！

数学代写|曲线和曲面代写Curves And Surfaces代考|Tangent plane

We have seen that tangent vectors play a major role in the study of curves. In this section we intend to define the notion of a tangent vector to a surface at a point. The geometrically simplest way is as follows:

Definition 3.3.1. Let $S \subseteq \mathbb{R}^3$ be a set, and $p \in S$. A tangent vector to $S$ at $p$ is a vector of the form $\sigma^{\prime}(0)$, where $\sigma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^3$ is a curve of class $C^{\infty}$ whose support lies in $S$ and such that $\sigma(0)=p$. The set of all possible tangent vectors to $S$ at $p$ is the tangent cone $T_p S$ to $S$ at $p$.

Remark 3.3.2. A cone (with the origin as vertex) in a vector space $V$ is a subset $C \subseteq V$ such that $a v \in C$ for all $a \in \mathbb{R}$ and $v \in C$. It is not difficult to verify that the tangent cone to a set is in fact a cone in this sense. Indeed, first of all, the zero vector is the tangent vector to a constant curve, so $O \in T_p S$ for all $p \in S$. Next, if $a \in \mathbb{R}^*$ and $O \neq v \in T_p S$, if we choose a curve $\sigma:(-\varepsilon, \varepsilon) \rightarrow S$ with $\sigma(0)=p$ and $\sigma^{\prime}(0)=v$, then the curve $\sigma_a:(-\varepsilon /|a|, \varepsilon /|a|) \rightarrow S$ given by $\sigma_a(t)=\sigma(a t)$ is such that $\sigma_a(0)=p$ and $\sigma_a^{\prime}(0)=a v$; so $a v \in T_p S$ as required by the definition of cone.

Example 3.3.3. If $S \subset \mathbb{R}^3$ is the union of two straight lines through the origin, it is straightforward to verify (check it) that $T_O S=S$.

数学代写|曲线和曲面代写Curves And Surfaces代考|Tangent vectors and derivations

Definition 3.3.6 of tangent plane is not completely satisfactory: it strongly depends on the fact that the surface $S$ is contained in $\mathbb{R}^3$, while it would be nice to have a notion of tangent vector intrinsic to $S$, independent of its embedding in the Euclidean space. In other words, we would like to have a definition of $T_p S$ not as a subspace of $\mathbb{R}^3$, but as an abstract vector space, depending only on $S$ and $p$. Moreover, since we are dealing with “differential geometry”, sooner or later we shall have to find a way to differentiate on a surface.

Surprisingly enough, we may solve both these problems at the same time. The main idea is contained in the following example.

Example 3.4.1. Let $U \subseteq \mathbb{R}^2$ be an open set, and $p \in U$. Then we can associate with each tangent vector $v \in T_p U=\mathbb{R}^2$ a partial derivative:
$$v=\left.\left(v_1, v_2\right) \mapsto \frac{\partial}{\partial v}\right|_p=\left.v_1 \frac{\partial}{\partial x_1}\right|_p+\left.v_2 \frac{\partial}{\partial x_2}\right|_p,$$
and all partial derivatives are of this kind. So, in a sense, we may identify $T_p U$ with the set of partial derivatives.

数学代写|曲线和曲面代写CURVES AND SURFACES代 考|TANGENT VECTORS AND DERIVATIONS

$$v=\left.\left(v_1, v_2\right) \mapsto \frac{\partial}{\partial v}\right|_p=\left.v_1 \frac{\partial}{\partial x_1}\right|_p+\left.v_2 \frac{\partial}{\partial x_2}\right|_p$$

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。