19th Ave New York, NY 95822, USA

# 物理代写|热力学代写Thermodynamics代考|PHY360 Back to Ohm

my-assignmentexpert™提供最专业的一站式服务：Essay代写，Dissertation代写，Assignment代写，Paper代写，Proposal代写，Proposal代写，Literature Review代写，Online Course，Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务，拥有各个专业的博硕教师团队帮您代写，免费修改及辅导，保证成果完成的效率和质量。同时有多家检测平台帐号，包括Turnitin高级账户，检测论文不会留痕，写好后检测修改，放心可靠，经得起任何考验！

## 物理代写|热力学代写Thermodynamics代考|Back to Ohm

We may obtain further information from Kirchhoff’s principle. Let $\mathbf{j}{e l}$ and $-2 \phi{e l}$ be the Lagrangian coordinate and the Lagrange multiplier, respectively (As for the Lagrange multipliers, see Sect. A.3). After integration by parts, therefore, Kirchhoff’s principle and Gauss’ theorem of divergence give:
\begin{aligned} 0=\delta \int(&\left.\frac{\left|\mathbf{j}{e l}\right|^2}{\sigma{\Omega}}-2 \phi_{e l} \nabla \cdot \mathbf{j}{e l}\right) d \mathbf{x}=2 \int\left(\frac{\mathbf{j}{e l} \cdot \delta \mathbf{j}{e l}}{\sigma{\Omega}}–\phi_{e l} \nabla \cdot \delta \mathbf{j}{e l}\right) d \mathbf{x}=\ =2 \int & {\left[\frac{\mathbf{j}{e l} \cdot \delta \mathbf{j}{e l}}{\sigma{\Omega}}-\nabla \cdot\left(\phi_{e l} \delta \mathbf{j}{e l}\right)+\delta \mathbf{j}{e l} \cdot \nabla \phi_{e l}\right] d \mathbf{x}=-2 \oint \phi_{e l} \delta \mathbf{j}{e l} d \mathbf{a}+} \ &+2 \int \delta \mathbf{j}{e l} \cdot\left(\frac{\mathbf{j}{e l}}{\sigma{\Omega}}+\nabla \phi_{e l}\right)=2 \int \delta \mathbf{j}{e l} \cdot\left(\frac{\mathbf{j}{e l}}{\sigma_{\Omega}}+\nabla \phi_{e l}\right) \end{aligned}
as the surface integral vanishes because $\delta \mathbf{j}{e l}=0$ on the boundary. The relationship above holds for arbitrary $\delta \mathbf{j}{e l}$, hence $\frac{\mathbf{j}{e l}}{\sigma{\Omega}}=-\nabla \phi_{e l}=\mathbf{E}+\mathbf{v} \wedge \mathbf{B}$, i.e. we retrieve Ohm’s law. We have tacitly assumed that $\delta \sigma_{\Omega}=0$ in the computation above. This assumption can e.g. justified under the assumption of uniform temperature, as $\sigma_{\Omega}=$ $0=\sigma_{\Omega}=O(T)$ in most cases. For $\phi_{e l} \rightarrow \phi_{e l}+\delta \phi_{e l}$ we retrieve the constraint $\nabla \cdot \mathbf{j}{e l}=0$. MinEP agrees with Kirchhoff’s principle for $T_1=T_2$ only. If $T_1 \neq T_2$, then Kirchhoff may still hold (it holds in each resistor separately as far as Ohm’s law holds and $\sigma{\Omega}$ is fixed in each resistor), in contrast with LNET. We discuss the stability of the state described by Kirchhoff’s principle below.

## 物理代写|热力学代写Thermodynamics代考|An Auxiliary Relationship

We may rewrite Kirchhoff’s principle in different forms. Let us replace $\mathbf{j}{e l}$ with $\mathbf{B}$ as Lagrangian coordinate. When performing such a change, the constraint too must involve the new Lagrangian coordinate. Maxwell’s equations of electromagnetism include $\nabla \cdot \mathbf{B}=0$ and lead to $\nabla \wedge \mathbf{B}=\mu_0 \mathbf{j}{e l}$ in the nonrelativistic limit $c \rightarrow \infty$. We define a Lagrange multiplier $\xi$ and write $\int\left[\frac{|\nabla \wedge \mathbf{B}|^2}{\mu_0^2 \sigma_{\Omega}}+\xi \nabla \cdot \mathbf{B}\right] d \mathbf{x}=\min$, i.e. ${ }^{16}$ :
$$\begin{gathered} 0=\delta \int\left[\frac{|\nabla \wedge \mathbf{B}|^2}{\mu_0^2 \sigma_{\Omega}}+\xi \nabla \cdot \mathbf{B}\right] d \mathbf{x}=\int\left[\frac{2(\nabla \wedge \mathbf{B}) \cdot(\nabla \wedge \delta \mathbf{B})}{\mu_0^2 \sigma_{\Omega}}+\xi \nabla \cdot \delta \mathbf{B}\right] d \mathbf{x}= \ =\frac{2}{\mu_0^2 \sigma_{\Omega}} \int \delta \mathbf{B} \cdot\left(\nabla \wedge \nabla \wedge \mathbf{B}+\nabla \xi^{\prime}\right) \quad ; \quad\left(\xi^{\prime} \equiv-\frac{\mu_0^2 \sigma_{\Omega} \xi}{2}\right) \end{gathered}$$

for arbitrary $\delta \mathbf{B}$, hence $\nabla \wedge \nabla \wedge \mathbf{B}+\nabla \xi^{\prime}=0$. We get rid of the unknown quantity $\xi^{\prime}$ by taking the curl of both sides ${ }^{17}$ and obtain a relationship involving $\mathbf{B}$ only:
$$\nabla \wedge \Delta \mathbf{B}=0$$
The usefulness of this result will be clear below. For the moment, we may say that we have found a condition satisfied by the generic magnetic field which is produced by a distribution of electric currents which satisfies Kirchhoff’s principle. Finally, we remark that the same relationship could also be obtained by taking the curl of Ohm’s law in the form $\frac{\mathbf{j}{s l}}{\sigma{\Omega}}+\nabla \phi_{e l}=0$ and in the nonrelativistic limit as far as $\nabla \sigma_{\Omega}=0$.

## 物理代写|热力学代写THERMODYNAMICS代考|BACK TO OHM

$0=\delta \int\left(\frac{|\mathbf{j} e l|^2}{\sigma \Omega}-2 \phi_{e l} \nabla \cdot \mathbf{j} e l\right) d \mathbf{x}=2 \int\left(\frac{\mathbf{j} e l \cdot \delta \mathbf{j} e l}{\sigma \Omega}-\phi_{e l} \nabla \cdot \delta \mathbf{j} e l\right) d \mathbf{x}==2 \int\left[\frac{\mathbf{j} e l \cdot \delta \mathbf{j} e l}{\sigma \Omega}-\nabla \cdot\left(\phi_{e l} \delta \mathbf{j} e l\right)+\delta \mathbf{j} e l \cdot \nabla \phi_{e l}\right] d \mathbf{x}=-2 \oint \phi_{e l} \delta \mathbf{j} e l d \mathbf{a}++2$

MinEP 同意 Kirchhoff 的原则 $T_1=T_2$ 只要。如果 $T_1 \neq T_2$, 那么其尔霍夫可能仍然持有
itholdsineachresistorseparatelyasfarasOhm’slawholdsand\\sigma \Omega \$$isfixedineachresistor，与 LNET 相比。我们在下面讨论由其尔霍夫原理描述的状态的 稳定性。 ## 物理代写|热力学代写THERMODYNAMICS代考|AN AUXILIARY RELATIONSHIP 我们可以用不同的形式重写基尔霍夫原理。让我们菖换 \mathrm{j} e 和 \mathrm{B} 作为拉格朗日坐标。执行此类更改时，约束也必须涉及新的拉格朗日坐标。麦克斯韦电磁方程包括 \nabla \cdot \mathbf{B}=0 并导致 \nabla \wedge \mathbf{B}=\mu_0 \mathbf{j} e l 在非相对论极限 c \rightarrow \infty. 我们定义一个拉格朗日乘数 \xi 和写 \int\left[\frac{|\nabla \wedge \mathbf{B}|^2}{\mu_0^2 \sigma_{\Omega}}+\xi \nabla \cdot \mathbf{B}\right] d \mathbf{x}=\mathrm{min} ， \mid \mathrm{E}^{16} :$$
0=\delta \int\left[\frac{|\nabla \wedge \mathbf{B}|^2}{\mu_0^2 \sigma_{\Omega}}+\xi \nabla \cdot \mathbf{B}\right] d \mathbf{x}=\int\left[\frac{2(\nabla \wedge \mathbf{B}) \cdot(\nabla \wedge \delta \mathbf{B})}{\mu_0^2 \sigma_{\Omega}}+\xi \nabla \cdot \delta \mathbf{B}\right] d \mathbf{x}=\frac{2}{\mu_0^2 \sigma_{\Omega}} \int \delta \mathbf{B} \cdot\left(\nabla \wedge \nabla \wedge \mathbf{B}+\nabla \xi^{\prime}\right) \quad\left(\xi^{\prime} \equiv-\frac{\mu_0^2 \sigma_{\Omega} \xi}{2}\right)
$$对于任意 \delta \mathbf{B} ，因此 \nabla \wedge \nabla \wedge \mathbf{B}+\nabla \xi^{\prime}=0. 我们擇脱了末知的数量 \xi^{\prime} 通过采取双方的卷曲 { }^{17} 并获得涉及的关系 \mathbf{B} 只要:$$
\nabla \wedge \Delta \mathbf{B}=0


## Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。