Scroll Top
19th Ave New York, NY 95822, USA

经济代写|微观经济学代考Microeconomics代写|ECON1001 Taxonomy of evolutionist game models

如果你也在 怎样代写微观经济学Microeconomics ECON1001这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。微观经济学Microeconomics是主流经济学的一个分支,研究个人和公司在做出有关稀缺资源分配的决策时的行为以及这些个人和公司之间的互动。微观经济学侧重于研究单个市场、部门或行业,而不是宏观经济学所研究的整个国民经济。

微观经济学Microeconomic的一个目标是分析在商品和服务之间建立相对价格的市场机制,并在各种用途之间分配有限资源。微观经济学显示了自由市场导致理想分配的条件。它还分析了市场失灵,即市场未能产生有效的结果。微观经济学关注公司和个人,而宏观经济学则关注经济活动的总和,处理增长、通货膨胀和失业问题以及与这些问题有关的国家政策。微观经济学还处理经济政策(如改变税收水平)对微观经济行为的影响,从而对经济的上述方面产生影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在经济Economy代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的经济Economy代写服务。我们的专家在微观经济学Microeconomics代写方面经验极为丰富,各种微观经济学Microeconomics相关的作业也就用不着 说。

经济代写|微观经济学代考Microeconomics代写|ECON1001 Taxonomy of evolutionist game models

经济代写|微观经济学代考Microeconomics代写|Taxonomy of evolutionist game models

In a first family of game models, the players follow an “epistemic learning” where they revise progressively their beliefs according to their observations and where they define consequently their actions. Each player is endowed with structural information about his own utilities stated in the stage game matrix and receives factual information about the opponents’ past sequence of moves. He has a weakened cognitive rationality which allows him to revise his beliefs on his opponent through various heuristic rules and to expect (at least in a probabilistic form) his future action. He has a myopic instrumental rationality since, if he always maximizes his utility function given the expectation of other’s behavior, his best response is computed only as concerns the present period and not the future ones.
In a second family of game models, the players follow a “behavioral learning” where they reinforce the actions which have shown a good performance in the past and inhibit the actions which have shown a bad performances. Each player possesses no more structural information about others’ characteristics and obtains factual information only on the utilities he got with his own past actions (and eventually the utilities got by the others). He has a cognitive rationality reduced to the conviction that the actions which succeeded in the past, in the sense of an aggregated utility index associated with each action, will still succeed in the future. His instrumental rationality is even more bounded, since he chooses randomly an action, however without neglecting anyone, with a probability which is increasing with its index.

In a third family of game models, the players follow an “evolutionary process”, inspired by evolutionary biology, where they reproduce in proportion to the payoffs they obtain in random and local interactions. Each player is decomposed in several subpopulations of agents using all the same strategy, subpopulation which is characterized by its proportion in the whole player-population. Each agent, hence endowed with a fixed strategy, renounces to any information (except for implementing his strategy if depending on the past) and has a cognitive as well as instrumental rationality reduced to nil. Each agent reproduces increasingly with the utility he obtains through a random interaction, in virtue of a “selection mechanism” which is not made explicit, and may nevertheless change his strategy along an exogenous random law, reflecting a “mutation mechanism”.

经济代写|微观经济学代考Microeconomics代写|Limits of evolutionist game theory

Evolutionist game theory, under its primitive form, is grounded on rather restrictive assumptions, even if it tries to compensate for them in its contemporary developments. Information gathering, reduced to a passive form, implies no voluntary process induced by the player in order to get original data and is insensible to the problem of ambiguity of the obtained messages. Behavior rules, always defined exogenously, do not make precise the cognitive processes necessary to implement them, and do not con-sider their possible dynamic adaptation to context and history. The global system stays stationary in its structure, without a chance for the environment to evolve or innovate and without the consideration of nested time scales leading to corresponding equilibria. These limits are successively examined now.

First, evolutionist game theory considers information as resulting exclusively from the immediate and transparent observation of past spontaneous actions of the players and of their consequences. Players have no direct ways of communicating (except when one introduces initially communication actions), which could allow them to share their plans of action and even exchange their objectives or beliefs. They do not try to reveal from the opponents’ observed actions their underlying preferences or representtations in order to rebuild at least some part of the missing structural information. They face no difficulty in giving a clear and univoque sense to the information they get, and even succeed in giving a common interpretation to the shared information without need for further concertation.

Second, evolutionist game theory assumes that the players follow expectation and choice rules which, even if of various degrees of sophistication, are endorsed definitely and implemented in a mechanistic way. These behavior rules, even if they precisely associate a final action to the past observations, are not adapted to context since a player may refine his behavior according to its analyzed complexity and instability. These behavior rules, even if their parameters are adjusted to past experience, are not adapted to history since a player may try to change his mind if he observes that he is “locked in” a suboptimal situation. These behavior rules, even if flexible, are not integrated in a whole hierarchy of learning modes where a player shifts from one level to another if his actions are not producing the expected results.

经济代写|微观经济学代考Microeconomics代写|ECON1001 Taxonomy of evolutionist game models

微观经济学代写

经济代写|微观经济学代考MICROECONOMICS代写|TAXONOMY OF EVOLUTIONIST GAME MODELS

在第一类游戏模型中,玩家遵循“认知学习”,他们根据自己的观察逐步修正自己的信念,并因此定义自己的行为。每个玩家都被赋予了阶段博弈矩阵中关于他自己效用的结构信息,并收到了关于对手过去行动顺序的事实信息。他的认知理性减弱,这使他能够通过各种启发式规则修正他对对手的信念,并期望一个吨升和一个秒吨一世n一个pr欧b一个b一世升一世秒吨一世CF欧r米他未来的行动。他具有短视的工具理性,因为如果他总是在给定他人行为预期的情况下最大化他的效用函数,那么他的最佳反应将仅根据当前时期而不是未来时期来计算。
在第二类游戏模型中,玩家遵循“行为学习”,强化过去表现良好的行为,抑制表现不佳的行为。每个参与者不再拥有关于其他人特征的结构信息,并且仅获得关于他自己过去行动所获得的效用的事实信息一个nd和在和n吨在一个升升是吨H和在吨一世升一世吨一世和秒G欧吨b是吨H和欧吨H和r秒. 他的认知理性被简化为相信过去成功的行动,就与每个行动相关的综合效用指数而言,在未来仍然会成功。他的工具理性更加有限,因为他随机选择了一个行动,但没有忽视任何人,概率随着其指数的增加而增加。

在第三类游戏模型中,玩家遵循受进化生物学启发的“进化过程”,在这个过程中,他们根据在随机和局部交互中获得的回报成比例地进行繁殖。每个玩家都使用相同的策略分解为代理的几个子群体,子群体的特征在于其在整个玩家群体中的比例。每个代理人,因此被赋予了固定的策略,放弃任何信息和XC和p吨F欧r一世米p升和米和n吨一世nGH一世秒秒吨r一个吨和G是一世Fd和p和nd一世nG欧n吨H和p一个秒吨并且具有减少到零的认知和工具理性。每个代理人通过随机交互获得的效用越来越多地复制,凭借未明确的“选择机制”,并且仍然可能沿着外生随机规律改变他的策略,反映了“变异机制”。

经济代写|微观经济学代考MICROECONOMICS代写|LIMITS OF EVOLUTIONIST GAME THEORY

进化论博弈论,在其原始形式下,基于相当严格的假设,即使它试图在当代发展中弥补这些假设。信息收集,简化为被动形式,意味着没有玩家为了获得原始数据而引发的自愿过程,并且对所获得消息的模糊性问题不敏感。行为规则总是外生定义的,没有精确地确定实施它们所必需的认知过程,也没有考虑它们对环境和历史的可能动态适应。全球系统在其结构中保持静止,环境没有机会进化或创新,也没有考虑导致相应平衡的嵌套时间尺度。现在依次检查这些限制。

首先,进化博弈论认为信息完全来自对参与者过去的自发行为及其后果的直接和透明观察。玩家没有直接的交流方式和XC和p吨在H和n欧n和一世n吨r欧d在C和秒一世n一世吨一世一个升升是C欧米米在n一世C一个吨一世欧n一个C吨一世欧n秒,这可以让他们分享他们的行动计划,甚至交换他们的目标或信念。他们不会试图从对手观察到的行为中揭示他们潜在的偏好或表征,以重建至少部分缺失的结构信息。他们毫不费力地为他们获得的信息赋予清晰和独特的意义,甚至无需进一步协调就可以成功地对共享信息给出共同的解释。

其次,进化博弈论假设参与者遵循期望和选择规则,即使复杂程度不同,这些规则也得到明确认可并以机械方式实施。这些行为规则,即使它们精确地将最终行动与过去的观察联系起来,也不适应上下文,因为玩家可能会根据其分析的复杂性和不稳定性来改进他的行为。这些行为规则,即使它们的参数已根据过去的经验进行了调整,也无法适应历史,因为如果玩家发现自己“被困在”次优情况下,他可能会试图改变主意。这些行为规则,即使是灵活的,也没有整合到整个学习模式层次结构中,如果玩家的行为没有产生预期的结果,他就会从一个层次转移到另一个层次。

经济代写|微观经济学代考Microeconomics代写

经济代写|微观经济学代考Microeconomics代写 请认准exambang™. exambang™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment