19th Ave New York, NY 95822, USA

# 数学代写|Ross数学夏令营2023选拔代写

Robot Rossie moves within a square room $A B C D$. Rossie moves along straight line segments, never leaving that room.

When Rossie encounters a wall she stops, makes a right-angle turn (with direction chosen to face into the room), and continues in that new direction.

If Rossie comes to one of the room’s corners, she rotates through two right angles, and moves back along her previous path.

Suppose Rossie starts at point $P$ on $A B$ and her path begins as a line segment of slope $s$.
We hope to describe Rossie’s path.
For some values of $P$ and $s$, Rossie’s path will be a tilted rectangle with one vertex on each wall of the room. (Often, this inscribed rectangle is itself a square.) In this case, Rossie repeatedly traces that stable rectangle.

(a) Suppose $s=1$ so that the path begins at a 45 degree angle.
For every starting point $P$, show: Rossie’s path is a stable rectangle.
(If $P$ is a corner point, the path degenerates to a line segment traced back and forth.)
Now draw some examples with various $P$ and $s$.
Given $P$ and $s$, does Rossie’s path always converge to a stable rectangle?

(b) First consider the case: $01$ or when $s<0$ ? Does the argument above still apply?

Let $\mathbb{Z}$ denote the set of integers. If $m$ is a positive integer, we write $\mathbb{Z}m$ for the system of “integers modulo $m$.” Some authors write $\mathbb{Z} / m \mathbb{Z}$ for that system. For completeness, we include some definitions here. The system $\mathbb{Z}_m$ can be represented as the set ${0,1, \ldots, m-1}$ with operations $\oplus$ (addition) and $\odot$ (multiplication) defined as follows. If $a, b$ are elements of ${0,1, \ldots, m-1}$, define: $a \oplus b=$ the element $c$ of ${0,1, \ldots, m-1}$ such that $a+b-c$ is an integer multiple of $m$. $a \odot b=$ the element $d$ of ${0,1, \ldots, m-1}$ such that $a b-d$ is an integer multiple of $m$. For example, $3 \oplus 4=2$ in $\mathbb{Z}_5$, $3 \odot 3=1$ in $\mathbb{Z}_4$, and $-1=12$ in $\mathbb{Z}{13}$.
To simplify notations (at the expense of possible confusion), we abandon that new notation and write $a+b$ and $a b$ for the operations in $\mathbb{Z}_m$, rather than writing $a \oplus b$ and $a \odot b$.

Let $\mathbb{Q}$ denote the system of rational numbers.
We write $4 \mathbb{Z}$ for the set of multiples of 4 in $\mathbb{Z}$. Similarly for $4 \mathbb{Z}{12}$. Consider the following number systems: $$\mathbb{Z}, \quad \mathbb{Q}, \quad 4 \mathbb{Z}, \quad \mathbb{Z}_3, \quad \mathbb{Z}_8, \quad \mathbb{Z}_9, \quad 4 \mathbb{Z}{12}, \quad \mathbb{Z}_{13} .$$
One system may be viewed as similar to another in several different ways. We will measure similarity using only algebraic properties.
(a) Consider the following sample properties:
(i) If $a^2=1$, then $a=\pm 1$.
(ii) If $2 x=0$, then $x=0$.
(iii) If $c^2=0$, then $c=0$.
Which of the systems above have properties (i), (ii), and/or (iii)?
(b) Formulate another algebraic property and determine which of those systems have that property. [Note: Cardinality is not considered to be an algebraic property.]
Write down some additional algebraic properties and investigate them.
(c) In your opinion, which of the listed systems are “most similar” to each another?

Please spend extra effort to write up this problem’s solution as an exposition that can be read and understood by a beginning algebra student. That student knows function notation and standard properties of polynomials (as taught in a high school algebra course). Your solution will be graded not only on the correctness of the math but also on the clarity of exposition.
(a) Find all polynomials $f$ that satisfy the equation:
$$f(x+2)=f(x)+2 \text { for every real number } x .$$
(b) Find all polynomials $g$ that satisfy the equation:
$$g(2 x)=2 g(x) \text { for every real number } x .$$
(c) The problems above are of the following type: Given functions $H$ and $J$, find all polynomials $Q$ that satisfy the equation:
$$J(Q(x))=Q(H(x)) \text { for every } x \text { in } S$$

where $S$ is a subset of real numbers. In parts (a) and (b), we have $J=H$ and $S$ is all real numbers, but other scenarios are also interesting. For example, the choice $J(x)=1 /(x-1)$ and $H(x)=1 /(x+1)$, generates the question:
Find all polynomials $Q$ that satisfy the equation:
$$\frac{1}{Q(x)-1}=Q\left(\frac{1}{x+1}\right)$$
for every real number $x$ such that those denominators are nonzero.
Is this one straightforward to solve?
(d) Make your own choice for $J$ and $H$, formulate the problem, and find a solution. Choose $J$ and $H$ to be non-trivial, but still simple enough to allow you to make good progress toward a solution.

(a) 假设$s=1$，使路径以45度角开始。

(如果$P$是一个角点，该路径就退化为一条来回追踪的线段)。

(b) 首先考虑以下情况：$01$或$s<0$时，Rossie的行为是什么？上面的论证是否仍然适用？

## Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。