Scroll Top
19th Ave New York, NY 95822, USA

数学代写|抽象代数代写Abstract Algebra代考| Math4120 The Cayley Digraph of a Group

如果你也在 怎样代写抽象代数Abstract Algebra Math4120这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。抽象代数Abstract Algebra是代数的一组高级课题,涉及抽象代数结构而不是通常的数系。这些结构中最重要的是群、环和场。通用代数是一个相关的学科,它将代数结构的类型作为单一对象进行研究。例如,群的结构是普遍代数中的一个单一对象,它被称为群的变种。

抽象代数Abstract Algebra在代数(数学中一个已经很广泛的部门)中,抽象代数(偶尔也称为现代代数)是对代数结构的研究。代数结构包括群、环、场、模块、向量空间、网格和代数。抽象代数这个术语是在20世纪初创造的,目的是将这一研究领域与代数的旧部分区分开来,更具体地说,是与初等代数,即在计算和推理中使用变量来表示数字。

抽象代数Abstract Algebra代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的抽象代数Abstract Algebra作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此抽象代数Abstract Algebra作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在抽象代数Abstract Algebra代写方面经验极为丰富,各种抽象代数Abstract Algebra相关的作业也就用不着 说。

数学代写|抽象代数代写Abstract Algebra代考| Math4120 The Cayley Digraph of a Group

数学代写|抽象代数代写Abstract Algebra代考|The Cayley Digraph of a Group

Definition Cayley Digraph of a Group
Let $G$ be a finite group and let $S$ be a set of generators for $G$. We define a digraph Cay $(S: G)$, called the Cayley digraph of $G$ with generating set $S$, as follows:

  1. Each element of $G$ is a vertex of $\operatorname{Cay}(S: G)$.
  2. For $x$ and $y$ in $G$, there is an arc from $x$ to $y$ if and only if $x s=y$ for some $s \in S$.

To tell from the digraph which particular generator connects two vertices, Cayley proposed that each generator be assigned a color, and that the arrow joining $x$ to $x s$ be colored with the color assigned to $s$. He called the resulting figure the color graph of the group. This terminology is still used occasionally. Rather than use colors to distinguish the different generators, we will use solid arrows, dashed arrows, and dotted arrows. In general, if there is an arc from $x$ to $y$, there need not be an arc from $y$ to $x$. An arrow emanating from $x$ and pointing to $y$ indicates that there is an arc from $x$ to $y$.

Following are numerous examples of Cayley digraphs. Note that there are several ways to draw the digraph of a group given by a particular generating set. However, it is not the appearance of the digraph that is relevant but the manner in which the vertices are connected. These connections are uniquely determined by the generating set. Thus, distances between vertices and angles formed by the arcs have no significance. (In the digraphs below, a headless arrow joining two vertices $x$ and $y$ indicates that there is an arc from $x$ to $y$ and an arc from $y$ to $x$. This occurs when the generating set contains both an element and its inverse. For example, a generator of order 2 is its own inverse.)

数学代写|抽象代数代写Abstract Algebra代考|Hamiltonian Circuits and Paths

Now that we have these directed graphs, what is it that we care to know about them? One question about directed graphs that has been the object of much research was popularized by the Irish mathematician Sir William Hamiltonbio]Hamilton, William Rowan in 1859 , when he invented a puzzle called “Around the World.” His idea was to label the 20 vertices of a regular dodecahedron with the names of famous cities. One solves this puzzle by starting at any particular city (vertex) and traveling “around the world,” moving along the arcs in such a way that each other city is visited exactly once before returning to the original starting point. One solution to this puzzle is given in Figure 28.1, where the vertices are visited in the order indicated.

Obviously, this idea can be applied to any digraph; that is, one starts at some vertex and attempts to traverse the digraph by moving along arcs in such a way that each vertex is visited exactly once before returning to the starting vertex. (To go from $x$ to $y$, there must be an arc from $x$ to $y$.) Such a sequence of arcs is called a Hamiltonian circuit in the digraph. A sequence of arcs that passes through each vertex exactly once without returning to the starting point is called a Hamiltonian path. In the rest of this chapter, we concern ourselves with the existence of Hamiltonian circuits and paths in Cayley digraphs.

数学代写|抽象代数代写Abstract Algebra代考| Math4120 The Cayley Digraph of a Group

抽象代数代写

数学代写|抽象代数代写ABSTRACT ALGEBRA代考|THE CAYLEY DIGRAPH OF A GROUP

Let的定义 Cayley Digraph $G$ 是一个有限群并且让 $S$ 是一组生成器 $G$. 我们定义一个有向图 $\operatorname{Cay}(S: G)$, 称为 Cayley 有向图 $G$ 带发电机组 $S$ ,如下:

的每个元素 $G$ 是一个顶点 $\operatorname{Cay}(S: G)$.

为了 $x$ 和 $y$ 在 $G$, 有一条弧从 $x$ 到 $y$ 当且仅当 $x s=y$ 对于一些 $s \in S$.
为了从有向图中判断哪个特定生成器连接两个顶点,Cayley 提议为每个生成器分配一种颜色,并且连接的箭头 $x$ 到 $x s$ 用分配给的颜色着色 $s$. 他将所 得图形称为该组的彩色图。这个术语仍然偶尔使用。我们不会使用颜色来区分不同的生成器,而是使用实线箭头、虚线箭头和虚线箭头。一般来 说,如果有弧从 $x$ 到 $y$, 不需要有弧从 $y$ 到 $x$.一支箭从 $x$ 并指向 $y$ 表示有弧从 $x$ 到 $y$.
以下是 Cayley 有向图的众多示例。请注意,有几种方法可以绘制由特定生成集给出的群的有向图。然而,相关的不是有向图的外观,而是顶点的 连接方式。这些连接由生成集唯一确定。因此,顶点之间的距离和弧形成的角度没有意义。
Inthedigraphsbelow, aheadlessarrowjoiningtwovertices $\$ x \$$ and $\$ y \$$ indicatesthatthereisanarcfrom $\$ x \$$ to $\$ y \$$ andanarcfrom $\$ y \$$ to $\$ x \$$.

数学代写|抽象代数代写ABSTRACT ALGEBRA代 考|HAMILTONIAN CIRCUITS AND PATHS


现在我们有了这些有向图,我们想了解它们的哪些方面呢? 爱尔兰数学家威廉汉密尔顿爵士 William Rowan 在 1859 年发明了一个名为“环游世界” 的谜题,从而推广了一个关于有向图的问题,该问题一直是许多研究的对象。他的想法是在正十二面体的 20 个顶点上标上著名城市的名称。从任 何特定城市开始解决这个难题vertex并“环 解决方案,其中按照指示的顺序访问顶点。
显然,这个想法可以应用于任何有向图; 也就是说,一个从某个顶点开始,并尝试通过沿弧移动来遍历有向图,这样每个顶点在返回起始顶点
之前只访问一次。Togofrom $\$ x \$$ to $\$ y \$$, theremustbeanarcfrom $\$ x \$ t o \$ y \$$. 这样的弧序列在有向图中称为哈密顿回路。通过每个顶点恰好一次 而不返回起点的㢮序列称为哈密顿路径。在本章的其余部分,我们将关注屾莱有向图中哈密顿回路和路径的存在性。

数学代写|抽象代数代写Abstract Algebra代考

数学代写|抽象代数代写Abstract Algebra代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Leave a comment