MY-ASSIGNMENTEXPERT™可以为您提供stanford.edu PHYSICS262 General Relativity广义相对论课程的代写代考和辅导服务!
PHYSICS262课程简介
General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime.
By the beginning of the 20th century, Newton’s law of universal gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between masses. In Newton’s model, gravity is the result of an attractive force between massive objects. Although even Newton was troubled by the unknown nature of that force, the basic framework was extremely successful at describing motion.
Prerequisites
Einstein’s General Theory of Relativity is a basis for modern ideas of fundamental physics, including string theory, as well as for studies of cosmology and astrophysics. The course begins with an overview of special relativity, and the description of gravity as arising from curved space. From Riemannian geometry and the geodesic equations, to curvature, the energy-momentum tensor, and the Einstein field equations. Applications of General Relativity: topics may include experimental tests of General Relativity and the weak-field limit, black holes (Schwarzschild, charged Reissner-Nordstrom, and rotating Kerr black holes), gravitational waves (including detection methods), and an introduction to cosmology (including cosmic microwave background radiation, dark energy, and experimental probes). Prerequisite: PHYSICS 121 or equivalent including special relativity.
Terms: Aut | Units: 3
Instructors: Graham, P. (PI) ; Abdel-Aziz, A. (TA)
Schedule for PHYSICS 262
PHYSICS262 General Relativity HELP(EXAM HELP, ONLINE TUTOR)
A particle in Minkowski space travels along a trajectory:
$$
\begin{aligned}
& x(\tau)=\alpha \tau^2 \
& y(\tau)=\tau \
& z(\tau)=0
\end{aligned}
$$
What is the 3 -velocity of the particle as a function of $\tau$ ?
Solution:
The spacelike components are given by
$$
V^i=\frac{U^i}{U^0}=\left(\frac{2 \alpha \tau}{\sqrt{2+(2 \alpha \tau)^2}}, \frac{1}{\sqrt{2+(2 \alpha \tau)^2}}, 0\right)
$$
(Schutz 3.24) Give the components of $\left(\begin{array}{l}2 \ 0\end{array}\right)$ tensor $M^{\alpha \beta}$ as the matrix
$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \
1 & -1 & 0 & 2 \
2 & 0 & 0 & 1 \
1 & 0 & -2 & 0
\end{array}\right]
$$
find:
the components of symmetric tensor $\left.M^{(} \alpha \beta\right)$ and antisymmetric tensor $M^{[\alpha \beta]}$
Solution:
The symmetric tensor can be written as
$$
M^{(\alpha \beta)}=\frac{1}{2}\left(M^{\alpha \beta}+M^{\beta \alpha}\right)
$$
When the indices are switched the elements of the tensor are
$$
\left[\begin{array}{cccc}
0 & 1 & 2 & 1 \
0 & -1 & 0 & 0 \
0 & 0 & 0 & -2 \
0 & 2 & 1 & 0
\end{array}\right]
$$
Using this we get the symmetric form
$$
M^{(\alpha \beta)}=\left[\begin{array}{cccc}
0 & 1 & 1 & 1 / 2 \
1 & -1 & 0 & 1 \
1 & 0 & 0 & -1 / 2 \
1 / 2 & 1 & -1 / 2 & 0
\end{array}\right]
$$
Similarly the anti symmetric tensor is
$$
M^{[\alpha \beta]}=\left[\begin{array}{cccc}
0 & 0 & -1 & -1 / 2 \
0 & 0 & 0 & 1 \
1 & 0 & 0 & 3 / 2 \
1 / 2 & -1 & -3 / 2 & 0
\end{array}\right]
$$
These are the required matrices.
MY-ASSIGNMENTEXPERT™可以为您提供UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN MATH2940 linear algebra线性代数课程的代写代考和辅导服务! 请认准MY-ASSIGNMENTEXPERT™. MY-ASSIGNMENTEXPERT™为您的留学生涯保驾护航。