Scroll Top
19th Ave New York, NY 95822, USA

数学代写|MATH1061 Discrete Mathematics

MY-ASSIGNMENTEXPERT™可以为您提供my.uq.edu.au MATH1061 Discrete Mathematics离散数学课程的代写代考辅导服务!

这是昆士兰大学离散数学课程的代写成功案例。

数学代写|MATH1061 Discrete Mathematics

MATH1061课程简介

Course Description: Propositional & predicate logic, valid arguments, methods of proof. Elementary set theory. Elementary graph theory. Relations & functions. Induction & recursive definitions. Counting methods pigeonhole, inclusion/exclusion. Introductory probability. Binary operations, groups, fields. Applications of finite fields. Elementary number theory.

There is no particular assumed background, apart from a level of mathematical sophistication roughly equivalent to completion of Queensland Mathematical Methods (formerly Maths B) at high school or MATH1040. Concurrent enrolment in MATH1061 and MATH1040 is appropriate for students who do not have Mathematical Methods from high school but who have a strong mathematical background, however this will require you to do extra work in MATH1061.

Prerequisites 

This course provides an introduction to discrete mathematics. It is likely to be useful for students who are planning on studying more mathematics, those intending to teach, and also for those enrolled in computer science, engineering, science and information technology.

Course Changes in Response to Previous Student Feedback

This is an active learning course. Learning resources have been updated and extended.

MATH1061 Discrete Mathematics HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

Let $n, m \in \mathbb{N}$, and let $p$ be a prime. Show that the following statements are true
(1) If $r=\frac{n \cdot p}{m} \in \mathbb{N}$, and $p$ does not divide $m$, then $p$ divides $r$.
In other wors: If $r=\frac{n \cdot p}{m} \in \mathbb{N}$, and $p$ does not appear in the prime factorization of $m$, then $r$ is a multiple of $p$.
(2) If $0<k<p$, then the binomial coefficient
$$
\left(\begin{array}{l}
p \
k
\end{array}\right)=\frac{p !}{k !(p-k) !} \quad \text { is a multiple of } p
$$

问题 2.

Let $a, b \in \mathbb{Z}_n$. Prove the following statements
(1) $a \oplus b=b \oplus a$.
(2) $a \otimes b=b \otimes a$.
(3) Let $c \in \mathbb{Z}_n$, then $(a \otimes b) \otimes c=a \otimes(b \otimes c)$.
(4) There is precisely one $x \in \mathbb{Z}_n$ such that $a=b \oplus x$.
(5) If $a$ is invertible, then $a$ has precisely one reciprocal in $\mathbb{Z}_n$.
(6) $a$ is invertible if and only if for any $x \in \mathbb{Z}_n$ there exists $y \in \mathbb{Z}_n$ such that $a \otimes y=x$.
(7) If $\operatorname{gcd}(a, n) \neq 1$, then there exists $x \in \mathbb{Z}_n$ such that $x \neq 0$ and $a \otimes x=0$.
(8) If $n$ is prime, and $a \neq 0$, then $a$ is invertible in $\mathbb{Z}_n$.
(9) Let $\mathbf{m}$ and $\mathbf{z}$ be integers, such that $\mathbf{m} \cdot a+\mathbf{z} \cdot n=1$. If $x=\mathbf{m} \bmod n$, then $x \otimes a=1$.

问题 3.

Prove the following statements
(1) Let a, b, $x, y, z, n, m, \tilde{n}, \tilde{m}$ be integers such that

$x=\mathbf{a} \cdot n+\mathrm{b} \cdot \mathrm{m}$

$y=\mathbf{a} \cdot \tilde{n}+\mathbf{b} \cdot \tilde{m}$ and

$z=x-q \cdot y$.
Then there exist integers $\mathrm{v}, \mathrm{W}$ such that
$$
z=\mathbf{a} \cdot \mathrm{v}+\mathrm{b} \cdot \mathrm{w} .
$$
(2) Let a, b be positive integers. Consider Euclid’s Algorithm for Greatest Common Divisor
$$
\begin{aligned}
\mathbf{a} & =q_0 \cdot \mathbf{b}+r_0 \
\mathbf{b} & =q_1 \cdot r_0+r_1 \
r_0 & =q_2 \cdot r_1+r_2 \
r_1 & =q_3 \cdot r_2+r_3 \
r_2 & =q_3 \cdot r_3+r_4 \
r_3 & =q_4 \cdot r_4+r_5 \
& \vdots \
r_{n-2} & =q_{n-1} \cdot r_{n-1}+r_n \
r_{n-1} & =q_n \cdot r_n+0
\end{aligned}
$$
Show, that for any $r_i$ we can find integers $v_i, w_i$ such that
$$
r_i=\mathbf{a} \cdot v_i+\mathbf{b} \cdot w_i
$$

问题 4.

I once wrote some code that looked like this:
bool $f(b o o l p$, bool $q$, bool $r){$
if $(p){$
if $(q){$
$\quad$ return $r ;$
$\quad$ return true;
} return true;
re
One student suggested this refactoring:
bool $f(b o o l p$, bool $q$, bool $r){$
if $(p \& \&){$
return $r ;$
} return true
}
Another suggested the code should be written as:
bool $f(b o o l p$, bool $q$, bool $r){$
if $(p){$
$\quad$ return $r$;
} if (q) {
$\quad$ return $r$;
return true;
Are the code fragments functionally equivalent? Which do you think is the more beautiful code?

数学代写|MATH1061 Discrete Mathematics

MY-ASSIGNMENTEXPERT™可以为您提供MY.UQ.EDU.AU MATH1061 DISCRETE MATHEMATICS离散数学课程的代写代考和辅导服务!

Related Posts

Leave a comment