MY-ASSIGNMENTEXPERT™可以为您提供math Math46400 Number theory 数论的代写代考和辅导服务!
这是纽约市立学院数论课程的代写成功案例。
Math46400简介
A first course in algebraic number theory which assumes some abstract algebra. Topics include: unique factorization in the integers and Euclidean domains, structure of the groups Z/mZ and their multiplicative units, quadratic residues and quadratic reciprocity, algebraic number fields, finite fields.
Prerequisites: Grade of C or better in MATH 34700 or departmental permission.
Contact Hours: 4 hr./wk.
Credits: 4
This is an undergraduate version of Math A6400. You must take the graduate version if you want graduate credit.
Prerequisites
Number theory or arithmetic or higher arithmetic in older usage is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, “Mathematics is the queen of the sciences—and number theory is the queen of mathematics.”
Math46400 Number theory HELP(EXAM HELP, ONLINE TUTOR)
Recall that for a number field $K$, the Dedekind zeta function $\zeta_K(s)$ is defined by
$$
\zeta_K(s):=\sum_I \mathrm{~N}(I)^{-s}
$$
where $I$ ranges over nonzero ideals of $\mathcal{O}_K$ and $\mathrm{N}(I)$ is the absolute norm, which is just the cardinality of the residue field $\mathcal{O}_K / \mathfrak{p}$ when $I$ is a prime ideal $\mathfrak{p}$.
The definition of $\mathrm{N}(\mathfrak{p}):=# \mathcal{O}_K / \mathfrak{p}$ as the cardinality of the residue field makes sense in any global field and extends multiplicatively to all $\mathcal{O}_K$-ideals. In this problem you will investigate the zeta function $\zeta_q(s):=\sum_I \mathrm{~N}(I)^{-s}$, where $I$ ranges over ideals of the ring of integers $\mathcal{O}_K:=\mathbb{F}_q[t]$ of the rational function field $K=\mathbb{F}_q(t)$.
For integers $n \geq 0$, the Bernoulli polynomials $B_n(x) \in \mathbb{Q}[x]$ are defined as the coefficients of the exponential generating function
$$
E(t, x):=\frac{t e^{t x}}{e^t-1}=\sum_{n \geq 0} \frac{B_n(x)}{n !} t^n .
$$
The Bernoulli numbers $B_n \in \mathbb{Q}$ are defined by $B_n=B_n(0)$.
(a) Prove that $B_0(x)=1, B_n^{\prime}(x)=n B_{n-1}(x)$, and $B_n(1)=B_n(0)$ for $n \neq 1$, and that these properties uniquely determine the Bernoulli polynomials.
(b) Prove that $B_n(x+1)-B_n(x)=n x^{n-1}$ and
$$
B_n(x+y)=\sum_{k=0}^n\left(\begin{array}{l}
n \
k
\end{array}\right) B_k(x) y^{n-k} .
$$
Use this to show that $B_k$ can alternatively be defined by the recurrence $B_0=1$ and
$$
B_n=-\frac{1}{n+1} \sum_{k=0}^{n-1}\left(\begin{array}{c}
n+1 \
k
\end{array}\right) B_k
$$
for all $n>0$, and show that $B_n=0$ for all odd $n>1$.
(c) Recall the hyperbolic cotangent function $\operatorname{coth} z:=\frac{e^z+e^{-z}}{e^z-e^{-z}}$. Prove that
$$
z \operatorname{coth} z=\sum_{n \geq 0} B_{2 n} \frac{(2 z)^{2 n}}{(2 n) !} .
$$
(d) Show that $\cot z=i \operatorname{coth} i z$ and then derive (as Euler did) the identity
$$
z \cot z=1-2 \sum_{k>1} \frac{z^2}{k^2 \pi^2-z^2}
$$
(e) Use (c) and (d) to prove that for all $n \geq 1$ we have
$$
\zeta(2 n)=(-1)^{n-1} \frac{(2 \pi)^{2 n} B_{2 n}}{2 \cdot(2 n) !}
$$
and then use the functional equation to prove that for all $n \geq 1$ we have
$$
\zeta(-n)=-\frac{B_{n+1}}{n+1}
$$
(f) Prove (rigorously!) that for any integer $n>1$ the asymptotic density of integers that are $n$-power free (not divisible by $p^n$ for any prime $p$ ) is $1 / \zeta(n)$ and compute this density explicitly for $n=2,4,6$.
(g) Prove that for all integer $n, N>1$ we have
$$
\sum_{m=0}^{N-1}(m+x)^{n-1}=\frac{B_n(N+x)-B_n(x)}{n} .
$$
Use this to deduce Faulhaber’s formula
$$
P_n(N):=\sum_{m=1}^{N-1} m^n=\frac{1}{n+1} \sum_{k=0}^n\left(\begin{array}{c}
n+1 \
k
\end{array}\right) B_k N^{n+1-k}
$$
for summing $n$th powers. Compute the polynomials $P_n(N)$ explicitly for $n=2,3,4$.
Recall that an arithmetic function is a function $a: \mathbb{Z}_{\geq 1} \rightarrow \mathbb{C}$; we say that $a \neq 0$ is multiplicative if $a(m n)=a(m) a(n)$ holds for all relatively prime $m, n$, and totally multiplicative if this holds for all $m, n$. Below are some examples; as usual, $p$ denotes a prime, $p^e$ denotes a (nontrivial) prime power, and $d \mid n$ indicates that $d$ is a positive divisor of $n$.
$0(n)=0,1(n)=1, \operatorname{id}(n):=n, \quad e(n):=0^{n-1}$;
$\tau(n):=#{d \mid n}, \quad \sigma(n):=\sum_{d \mid n} d$
$\omega(n):=#{p \mid n}, \Omega(n):=#\left{p^e \mid n\right}, \phi(n):=#(\mathbb{Z} / n \mathbb{Z})^{\times}$;
$\lambda(n):=(-1)^{\Omega(n)}, \mu(n):=(-1)^{\omega(n)} \cdot 0^{\Omega(n)-\omega(n)}, \quad \mu^2(n):=\mu(n)^2$.
The set of all arithmetic functions forms a $\mathbb{C}$-vector space that we denote $\mathcal{A}$. Associated to each arithmetic function is a Dirichlet series $\sum_{n \geq 1} c_n n^{-s}$ defined by
$$
D_a(s):=\sum_{n \geq 1} a(n) n^{-s}
$$
The Dirichlet convolution $a * b$ of arithmetic functions $a$ and $b$ is defined by
$$
(a * b)(n):=\sum_{d \mid n} a(d) b(n / d)
$$
We use $f^{* n}$ to denote the $n$-fold convolution $f * \cdots * f$.
(a) Prove that for any arithmetic functions we have $D_{a * b}=D_a D_b$ and that endowing $\mathcal{A}$ with a multiplication defined by Dirichlet convolution makes $\mathcal{A}$ a $\mathbb{C}$-algebra that is isomorphic to the $\mathbb{C}$-algebra of Dirichlet series (with the usual multiplication).
(b) Show that $\mathcal{A}$ is a local ring with unit group $\mathcal{A}^{\times}={f \in \mathcal{A}: f(1) \neq 0}$ and maximal ideal $\mathcal{A}0={f \in \mathcal{A}: f(1)=0}$. Prove that the set of multiplicative functions $\mathcal{M}$ forms a subgroup of $\mathcal{A}_1:={f \in \mathcal{A}: f(1)=1} \subseteq \mathcal{A}^{\times}$. Is this also true of the set of totally multiplicative functions? (c) Prove the following identities $\mu * 1=e, \phi * 1=\mathrm{id}, \mu * \mathrm{id}=\phi, 1 * 1=\tau, \mathrm{id} * 1=\sigma$. Use $\mu * 1=e$ to give a one-line proof of the Möbius inversion formula. (d) Define the exponential map $\exp : \mathcal{A} \rightarrow \mathcal{A}$ by $$ \exp (f):=\sum{n=0}^{\infty} \frac{f^{* n}}{n !}=e+f+\frac{f * f}{2}+\cdots
$$
Prove that exp defines a group isomorphism from $\left(\mathcal{A}0,+\right)$ to $\left(\mathcal{A}_1, \right)$ with inverse $$ \log (f):=\sum{n=1}^{\infty} \frac{(-1)^{n-1}(f-e)^{ n}}{n}
$$
(e) Define $\kappa(n)$ to be $1 / k$ if $n=p^k$ is a prime power and 0 otherwise. Prove that $\exp \kappa=1$, and deduce that $\exp (-\kappa)=\mu$ and $\exp (2 \kappa)=\tau$.
(f) Prove that each $f \in \mathcal{A}_1$ has a unique square-root $g \in \mathcal{A}_1$ for which $g^{* 2}=f$ that we denote $f^{* 1 / 2}$. Prove that $1^{* 1 / 2}=\exp (\kappa / 2)$ and compute $\exp (\kappa / 2)(n)$ for $n$ up to 10 .
MY-ASSIGNMENTEXPERT™可以为您提供MATH MATH46400 NUMBER THEORY 数论的代写代考和辅导服务!