Scroll Top
19th Ave New York, NY 95822, USA

数学代写|MTH829 Complex Analysis

MY-ASSIGNMENTEXPERT™可以为您提供Michigan State University MTH829 Complex Analysis复分析的代写代考辅导服务!

这是密歇根州立大学复分析课程的代写成功案例。

数学代写|MTH829 Complex Analysis

MTH829课程简介

Description
Welcome to MTH 829 Complex Analysis. Please follow the link below to find the syllabus. Announcements about the course will be posted here. The on-line forum for asking and answering questions can be found at the Q&A tab above.

To use the forum you will need to register at the link you will have received in your msu email. If you have not used piazza before with your msu email, you will be asked to create a password the first time you log in.

Prerequisites 

PREREQUISITES: Solid background in Real Analysis and Multiple Dimensional Analysis, ability in doing rigorous proofs,DESCRIPTION: The course will cover most of Chapters I-VIII. Here is a brief list of the main topics: complex numbers and elementary topology of the complex plane, power series, uniformly convergence, Cauchy’s theorem, winding number, Laurent series, residues, contour integrals, evaluation of definite integrals, conformal mappings, harmonic functions, and other topics if time permits.

HOMEWORK: This will be the most important part of your learning experience in the course! Homework problems will be assigned in class and collected roughly every week. Problem sets must be written up neatly and logically, with appropriate explanations provided. You can use my office hours to discuss any difficulties you may be having with these problems. Exams will consist primarily of problems similar to examples and homework problems.

MTH829 Complex Analysis HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

Recall the following Taylor series:
$$
\begin{aligned}
& e^z-1=z+\frac{z^2}{2 !}+\frac{z^3}{3 !}+\cdots \
& \sin ^3 z=z^3-\frac{z^5}{2}+\cdots \
& \frac{e^z-1}{\sin ^3 z}=\frac{z+\frac{z^2}{2 !}+\frac{z^3}{3 !}+\cdots}{z^3-\frac{z^5}{2}+\cdots}
\end{aligned}
$$
By performing long division
the coefficient of $\frac{1}{z}$ is seen to be $\frac{1}{2}$ so that
$$
\operatorname{Res}\left(\frac{e^z-1}{\sin ^3 z}, 0\right)=\frac{1}{2} \text {. }
$$

问题 2.

(a)
$$
\begin{aligned}
& \int_0^{2 \pi} \frac{d \theta}{1-2 a \cos \theta+a^2}=\oint_{|z|=1} \frac{d z}{i z\left(1-2 a\left(\frac{z+z^{-1}}{2}\right)+a^2\right)}=\oint_{|z|=1} \frac{d z}{-a i(z-a)\left(z-\frac{1}{a}\right)} \
= & \begin{cases}2 \pi i \operatorname{Res}\left(\frac{1}{-a i(z-a)\left(z-\frac{1}{a}\right)}, a\right), & |a|>1 \
2 \pi i \operatorname{Res}\left(\frac{1}{-a i(z-a)\left(z-\frac{1}{a}\right)}, \frac{1}{a}\right), & |a|<1\end{cases} \
= & \begin{cases}\frac{2 \pi}{a} \lim {z \rightarrow a}\left(\frac{1}{z-\frac{1}{a}}\right)=\frac{2 \pi}{a^2-1}, & |a|>1 \ \frac{2 \pi}{a} \lim {z \rightarrow \frac{1}{a}}\left(\frac{1}{z-a}\right)=\frac{2 \pi}{1-a^2}, & |a|<1\end{cases}
\end{aligned}
$$
(b) Consider the closed contour $C$ as depicted in the following figure
$$
\oint_C \frac{z^2}{z^4+1} d z=\int_{C_R} \frac{z^2}{z^4+1} d z+\int_{-R}^R \frac{x^2}{x^4+1} d x .
$$
By Residue calculus
$$
\oint_C \frac{z^2}{z^4+1} d z=2 \pi i\left[\operatorname{Res}\left(\frac{z^2}{z^4+1}, e^{i \pi / 4}\right)+\operatorname{Res}\left(\frac{z^2}{z^4+1}, e^{i 3 \pi / 4}\right)\right]
$$
where the isolated singularities of $\frac{z^2}{z^4+1}$ enclosed inside $C$ are $z=e^{i \pi / 4}$ and $z=$ $e^{i 3 \pi / 4}$. Both are simple poles so that
$$
\begin{gathered}
\operatorname{Res}\left(\frac{z^2}{z^4+1}, e^{i \pi / 4}\right)=\left.\frac{z^2}{4 z^3}\right|{z=e^{i \pi / 4}}=\frac{1}{4} e^{-i \pi / 4} \ \operatorname{Res}\left(\frac{z^2}{z^4+1}, e^{i 3 \pi / 4}\right)=\frac{1}{4} e^{-i 3 \pi / 4} . \ \int{C_R} \frac{z^2}{z^4+1} d z=O\left(\frac{R^2}{R^4}\right) R \rightarrow 0 \text { as } R \rightarrow \infty .
\end{gathered}
$$
By taking the limit $R \rightarrow \infty$, we obtain
$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x^2}{x^4+1} d x & =2 \pi i\left[\operatorname{Res}\left(\frac{z^2}{z^4+1}, e^{i \pi / 4}\right)+\operatorname{Res}\left(\frac{z^2}{z^4+1}, e^{i 3 \pi / 4}\right)\right] \
& =\frac{2 \pi i}{4}\left[e^{-i \pi / 4}+e^{-i 3 \pi / 4}\right]=\frac{\pi}{\sqrt{2}} .
\end{aligned}
$$
(c) Consider
$$
\oint_C \frac{z e^{i a z}}{z^2+b^2} d z=\int_{-R}^R \frac{x e^{i a x}}{x^2+b^2} d x+\int_{C_R} \frac{z e^{i a z}}{z^2+b^2} d z
$$
Letting $R \rightarrow \infty$, then the integral over $C_R$ vanishes by Jordan’s lemma. This is because $\left|\frac{z}{z^2+b^2}\right| \rightarrow 0$ as $R \rightarrow \infty$. The integrand has a singularity at $z=b i$ which is enclosed inside the closed contour. Since $b>0$, we have
$$
2 \pi i \operatorname{Res}\left(\frac{z e^{i a z}}{z^2+b^2}, b i\right)=\left.2 \pi i\left(\frac{-z e^{i a z}}{z+i b}\right)\right|{z=b i}=\frac{\pi}{b} b i e^{-a b} $$ so that $$ \operatorname{Im} \oint_C \frac{z e^{i a z}}{z^2+b^2} d z=\int{-\infty}^{\infty} \frac{x \sin a x}{x^2+b^2} d x=\frac{\pi}{e^{a b}}
$$

问题 3.

One may be tempted to say that the given integral equals the imaginary part of
$$
\text { PV } \int_{-\infty}^{\infty} \frac{e^{i x}}{x+i} d x
$$
This is wrong! (Why?) Moreover, we cannot use $(\sin z) /(z+i)$ either, because it is unbounded in both the upper and lower half-planes. We try the substitution
$$
\sin x=\frac{e^{i x}-e^{-i x}}{2 i}
$$
which lead to the representation
$$
I=\frac{1}{2 i}\left(\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{i x}}{x+i} d x-\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{-i x}}{x+i} d x\right) .
$$
Now we deal with each integral separately. For
$$
I_1:=\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{i e}}{x+i} d x
$$
we close the contour $[-\rho, \rho]$ with the half-circle $C_\rho^{+}$in the upper half-plane. Then, by Jordan’s lemma
$$
\lim {\rho \rightarrow \infty} \int{C_\rho^{+}} \frac{e^{i z}}{z+i} d z=0
$$
and since the only singularity of the integrand is in the lower half-plane at $z=-i$, we deduce that $I_1=0$.
Now the second integral
$$
I_2:=\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{-i x}}{x+i} d x
$$
involves the function $e^{-i z}$, which is unbounded in the upper half-plane, so we close the contour $[-\rho, \rho]$ in the lower half-plane with the semicircle $C_\rho^{-}: z=\rho e^{-i t}, 0 \leq t \leq \pi$ (see the above figure). Then by the analogue of Jordan’s lemma for the case when $m<0$, we deduce that
$$
\lim {\rho \rightarrow \infty} \int{C_\rho^{-}} \frac{e^{-i z}}{z+i} d z=0 .
$$
Observing that the closed contour in the figure is negatively oriented, we obtain
$$
\begin{aligned}
I_2 & =-2 \pi i \operatorname{Res}\left(\frac{e^{-i z}}{z+i} ;-i\right) \
& =-2 \pi i \lim _{z \rightarrow-i} e^{-i z}=-2 \pi i e^{-1} .
\end{aligned}
$$
Consequently,
$$
I=\frac{1}{2 i}\left(I_1-I_2\right)=\frac{1}{2 i}\left(0+2 \pi i e^{-1}\right)=\frac{\pi}{e}
$$

问题 4.

Consider
$$
\begin{aligned}
\oint_C \frac{\log z}{z^2+4} d z= & \int_{-R}^{-\varepsilon} \frac{\log z}{z^2+4} d x+\int_{C_z} \frac{\log z}{z^2+4} d z \
& +\int_{\varepsilon}^R \frac{\ln x}{x^2+4} d x+\int_{C_R} \frac{\log z}{z^2+4} d z,
\end{aligned}
$$
It is necessary to show that the second integral vanishes as $\varepsilon \rightarrow 0$ and the fourth integral vanishes as $R \rightarrow \infty$. The integrand has a simple pole at $z=2 i$.
Now
$$
\begin{aligned}
& \int_{C_{\varepsilon}} \frac{\log z}{z^2+4} d z=O(\varepsilon \ln \varepsilon) \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \
& \int_{C_R} \frac{\log z}{z^2+4} d z=O\left(\frac{\ln R}{R^2} \cdot R\right) \rightarrow 0 \text { as } R \rightarrow \infty .
\end{aligned}
$$
The sum of the first and third integrals is
$$
\begin{aligned}
& i \pi \int_{-\infty}^0 \frac{1}{x^2+4} d x+2 \int_0^{\infty} \frac{\ln x}{x^2+4} d x \
= & 2 \pi i \operatorname{Res}\left(\frac{\log z}{z^2+4}, 2 i\right) \
= & 2 \pi i \frac{\log 2 i}{4 i}=\frac{\pi}{2}\left(\ln 2+i \frac{\pi}{2}\right) .
\end{aligned}
$$
By equating the real parts, we obtain
$$
\int_0^{\infty} \frac{\ln x}{x^2+4} d x=\frac{\pi}{4} \ln 2
$$

数学代写|MTH829 Complex Analysis

MY-ASSIGNMENTEXPERT™可以为您提供MICHIGAN STATE UNIVERSITY MATH113 COMPLEX ANALYSIS复分析的代写代考和辅导服务!

Related Posts

Leave a comment