Scroll Top
19th Ave New York, NY 95822, USA

数学代写|Ross Program 2024 Application Problems代写

This document is one part of the application to the Ross Mathematics Program,and will remain posted at https://rossprogram.org/students/to-apply from January through March. The deadline for applications is March 15, 2024. The Admissions Committee will start reading applications on March 16.


You are not expected to answer every question perfectly; rather, take this application as an opportunity to explore some beautiful mathematics! We are interested in seeing how you approach unfamiliar, open-ended math problems, and we encourage you to write up your discoveries and conjectures, even if you can’t prove them.
We believe that the most valuable part of a problem is the time spent thinking on it, and your application should reflect this: we are not looking for quick answers written in minimal space. Instead, we hope to see evidence of your explorations, conjectures, proofs, and generalizations written in a readable format. If you make progress on these four problems (even if you don’t solve them completely), we encourage you to submit
your Ross application.
Submit your own work on these problems. If you’ve seen one of the problems before (e.g. in a class or online), please include a reference along with your solution.
Admission factors include the quality of mathematical exposition and the questions you pose, as well as the completeness and correctness of your solutions to those questions.

Work on the 2024 Application Problems which you can find at https://raw.githubusercontent.com/rossprogram/rossprogram.github.io/master/students/application-problems.pdfThere are four problems. Upload your carefully written solutions to those four problems.

  • The solution to each problem must be uploaded as a separate PDF.
  • Use the PDF file format. If your solution file is in some other fomat, please transform it to a PDF, check that the converted file is readable, and then upload that PDF.
  • We welcome solutions that have been prepared with LaTeX or some similar typesetting program that produces PDFs. It is OK to type up your work using a word processor (like Microsoft Word), and then converting that file to a PDF. Please verify that the mathematical symbols you use are readable.
  • You are allowed to write up your solutions by hand, provided you use black ink or very dark pencil. Scan each page, combine the pages for one problem into a single PDF, check that the file is readable, and then upload that file. Please be sure to reduce the file size to be less than five megabytes. The Ross system cannot accept any files of larger size.

The Admissions Committee is not looking for quick answers written in minimal space, but rather for readable mathematical expositions that includes evidence of your explorations, conjectures, and proofs.

Problem 1

A polynomial is integral when it has integer coefficients. The square root of 2 is a solution to the integral polynomial equation $x^2-2=0$.
A number is rational when it can be expressed as $\frac{a}{b}$ for integers $a$ and $b$ (with $b \neq 0$ ).
A number is irrational when it is not rational.
(a) Suppose $c$ is a non-square integer. (That is, $c \neq n^2$ for any $n$.) Explain why $\sqrt{c}$ is not rational. Similarly, if $c$ is a non-cube integer, does it follow that $\sqrt[3]{c}$ is irrational?
(b) Find an integral polynomial equation that has $\alpha=\sqrt{3}+\sqrt{5}$ as a solution. Show that $\alpha$ is irrational.
(c) Let $a$ and $b$ be integers. Find an integral polynomial equation which has $\sqrt{a}+\sqrt{b}$ as a solution. Must $\sqrt{a}+\sqrt{b}$ be irrational? If $a \neq b$, must $\sqrt{a}-\sqrt{b}$ be irrational?
(d) Formulate some generalizations. As a starting point, is $\beta=\sqrt{3}+\sqrt{5}+\sqrt{7}$ irrational? What about numbers like $\gamma=3 \sqrt{2}-2 \sqrt{3}-3 \sqrt{5}+\sqrt{6}$ and $\delta=\sqrt[3]{5}-\sqrt{2}$ ?

Problem 2

Here’s a (paraphrased) conversation that took place between two Ross students.
A: Hey, want to see a magic trick?
B: Sure, how does it go?
A: Think of any number. Any nonnegative integer, I should say.
B: Okay.
A: Multiply it by 3 .
B: Okay….
A: Now divide it by 2, and if you get a decimal, then round down. Tell me if you rounded down or not.
B: I did have to round down.
A: Multiply it by 3 then divide it by 2 again. Again, tell me if you rounded down.
B: Okay, hang on… I did not have to round down this time.
A: Great, now just tell me: how many times does 9 go into this last number?
B: You want me to divide by 9 ?
A: Yes, just the quotient.
B: Um, the quotient is 4 .
A: So your original number was 19 .
B: That’s right! How did you do that? Let me think….
(a) Figure out how A’s magic trick works, and write up a clear, mathematical explanation of how to perform it.
(b) What variants of this trick can you come up with using the same principles? Can you change the numbers 2,3 , and 9 in the trick, or maybe the operations involved? What about the information you ask for?

数学代写|Ross数学夏令营2024选拔代写

问题 1

当一个多项式有整数系数时,它就是积分多项式。2 的平方根是积分多项式方程 $x^2-2=0$ 的解。
当一个数可以用 $ rac{a}{b}$ 表示整数 $a$ 和 $b$(其中 $b
等于 0$ )。
当一个数不是有理数时,它就是无理数。
(a) 假设 $c$ 是一个非平方整数。即
eq n^2$ for any $n$)。请解释为什么 $\sqrt{c}$ 不是有理数。同样,如果 $c$ 是一个非立方整数,那么 $\sqrt[3]{c}$ 是不是无理数呢?
(b) 找出一个以 $lpha=\sqrt{3}+\sqrt{5}$ 为解的积分多项式方程。证明 $lpha$ 是无理数。
(c) 设 $a$ 和 $b$ 为整数。求一个以 $\sqrt{a}+\sqrt{b}$ 为解的积分多项式方程。$sqrt{a}+\sqrt{b}$ 一定是无理数吗?如果 $a
eq b$,那么 $\sqrt{a}-\sqrt{b}$ 一定是无理数吗?
(d) 提出一些概括。作为一个起点,$ea=\sqrt{3}+\sqrt{5}+\sqrt{7}$是无理数吗?那么像 $\gamma=3 \sqrt{2}-2 \sqrt{3}-3 \sqrt{5}+\sqrt{6}$ 和 $\delta=sqrt[3]{5}-\sqrt{2}$ 这样的数呢?

问题 2

下面是罗斯大学两个学生之间的一段对话(转述)。
A: 嘿,想看魔术吗?
乙:当然,怎么变?
甲:随便想一个数。应该说是任何一个非负整数。
乙:好的。
甲:乘以 3 。
乙:好的….。
甲:现在除以 2,如果是小数,就四舍五入。告诉我你有没有四舍五入。
乙:我必须四舍五入。
甲:乘以 3,然后再除以 2。同样,告诉我你是否四舍五入了。
乙:好的,等一下……这次我不用四舍五入。
甲:很好,现在告诉我:最后这个数是 9 的几倍?
乙:你要我除以 9?
甲:是的,只要商。
乙:嗯,商是 4。
甲:所以你原来的数字是 19 。
乙:没错!你是怎么算出来的?让我想想….
(a) 找出 A 的魔术是如何变出来的,并写出清晰的数学解释。
(b) 利用同样的原理,你还能变出什么魔术?你能改变魔术中的数字 2、3 和 9 吗?你要求的信息是什么?

Ross数学夏令营2024选拔代写

斯坦福大学数学夏令营保录取Sumac代写2023

斯坦福大学数学夏令营保录取Sumac代写2023 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Leave a comment