Scroll Top
19th Ave New York, NY 95822, USA

数学代写|线性代数代写Linear algebra代考|MA2508

如果你也在 怎样代写线性代数Linear algebra 学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。线性代数Linear algebra是数学的一个基本领域,可以说是有史以来最强大的数学工具。

线性代数Linear algebra是商业、经济学、工程学、物理学、计算机科学、生态学、社会学、人口学和遗传学等领域的核心研究课题。举个线性代数的例子,只要看看Google搜索引擎就知道了,它依靠线性代数对搜索结果进行相关度排序。

线性代数Linear algebra代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的线性代数Linear algebra作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此线性代数Linear algebra作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|线性代数代写Linear algebra代考|MS-C1342

数学代写|线性代数代写Linear algebra代考|Gaussian and Gauss-Jordan Elimination

Definitions:
Let $A$ be a matrix with $m$ rows.
When a row of $A$ is not zero, its first nonzero entry is the leading entry of the row. The matrix $A$ is in row echelon form (REF) when the following two conditions are met:

Any zero rows are below all nonzero rows.

For each nonzero row $i, i \leq m-1$, either row $i+1$ is zero or the leading entry of row $i+1$ is in a column to the right of the column of the leading entry in row $i$.

The matrix $A$ is in reduced row echelon form (RREF) if it is in row echelon form and the following third condition is also met:

If $a_{i k}$ is the leading entry in row $i$, then $a_{i k}=1$, and every entry of column $k$ other than $a_{i k}$ is zero.
Elementary row operations on a matrix are operations of the following types:

Add a multiple of one row to a different row.

Exchange two different rows.

Multiply one row by a nonzero scalar.
The matrix $A$ is row equivalent to the matrix $B$ if there is a sequence of elementary row operations that transforms $A$ into $B$. The reduced row echelon form of $A, \operatorname{RREF}(A)$, is the matrix in reduced row echelon form that is row equivalent to $A$. A row echelon form of $A$ is any matrix in row echelon form that is row equivalent to $A$. The $\operatorname{rank}$ of $A$, denoted $\operatorname{rank} A$ or $\operatorname{rank}(A)$, is the number of leading entries in $\operatorname{RREF}(A)$. If $A$ is in row echelon form, the positions of the leading entries in its nonzero rows are called pivot positions and the entries in those positions are called pivots. A column (row) that contains a pivot position is a pivot column (pivot row).

数学代写|线性代数代写Linear algebra代考|Systems of Linear Equations

A linear equation is an equation of the form $a_1 x_1+\cdots+a_p x_p=b$ where $a_1, \ldots, a_p, b \in F$ and $x_1, \ldots, x_p$ are variables. The scalars $a_j$ are coefficients and the scalar $b$ is the constant term.

A system of linear equations, or linear system, is a set of one or more linear equations in the same
$$
a_{11} x_1+\cdots+a_{1 p} x_p=b_1
$$
variables, such as $a_{21} x_2+\cdots+a_{2 p} x_p=b_2$
. A solution of the system is a $p$-tuple $\left(c_1, \ldots, c_p\right)$ such that
$$
a_{m 1} x_1+\cdots+a_{m p} x_p=b_m
$$
letting $x_j=c_j$ for each $j$ satisfies every equation. The solution set of the system is the set of all solutions. A system is consistent if there exists at least one solution; otherwise it is inconsistent. Systems are equivalent if they have the same solution set. If $b_j=0$ for all $j$, the system is homogeneous. A formula that describes a general vector in the solution set is called the general solution.
$$
a_{11} x_1+\cdots+a_{1 p} x_p=b_1
$$
For the system $\begin{aligned} & a_{21} x_2+\cdots+a_{2 p} x_p=b_2 \ & \cdots\end{aligned}$, the $m \times p$ matrix $A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 p} \ \vdots & \cdots & \vdots \ a_{m 1} & \cdots & a_{m p}\end{array}\right]$ is the coefficient
$$
a_{m 1} x_1+\cdots+a_{m p} x_p=b_m
$$
matrix, $\mathbf{b}=\left[\begin{array}{c}b_1 \ \vdots \ b_m\end{array}\right]$ is the constant vector, and $\mathbf{x}=\left[\begin{array}{c}x_1 \ \vdots \ x_p\end{array}\right]$
is the unknown vector. The $m \times(p+1)$ matrix
$[A \mathbf{b}]$ is the augmented matrix of the system. It is customary to identify the system of linear equations with the matrix-vector equation $A \mathbf{x}=\mathbf{b}$. This is valid because a column vector $\mathbf{x}=\left[\begin{array}{c}c_1 \ \vdots \ c_p\end{array}\right]$ satisfies $A \mathbf{x}=$ $\mathbf{b}$ if and only if $\left(c_1, \ldots, c_p\right)$ is a solution of the linear system.

数学代写|线性代数代写Linear algebra代考|MA2508

线性代数代写

数学代写|线性代数代写Linear algebra代考|Gaussian and Gauss-Jordan Elimination

定义:
设$A$是一个有$m$行的矩阵。
当$A$的行不为零时,它的第一个非零项是该行的前导项。当满足以下两个条件时,矩阵$A$为行阶梯形(REF):

任何零行都低于所有非零行。

对于每个非零行$i, i \leq m-1$,行$i+1$要么为零,要么行$i+1$的前导项位于行$i$前导项所在列右侧的列中。

矩阵$A$为行简化阶梯形(RREF),同时满足以下第三个条件:

如果$a_{i k}$是行$i$中的前导项,则$a_{i k}=1$,并且列$k$中除$a_{i k}$以外的所有项都为零。
矩阵上的初等行操作是以下类型的操作:

将一行的倍数添加到另一行。

交换两个不同的行。

将一行乘以一个非零标量。
如果存在一系列将$A$转换为$B$的基本行运算,则矩阵$A$与矩阵$B$行等价。$A, \operatorname{RREF}(A)$的行简化阶梯形,是行简化阶梯形的矩阵行等价于$A$。$A$的行阶梯形是任何行阶梯形的矩阵行等价于$A$。$A$的$\operatorname{rank}$,表示为$\operatorname{rank} A$或$\operatorname{rank}(A)$,是$\operatorname{RREF}(A)$中前导条目的个数。如果$A$是行阶梯形,它的非零行中前导元素的位置称为主位置,这些位置上的元素称为枢轴。包含主位置的列(行)是主列(主行)。

数学代写|线性代数代写Linear algebra代考|Systems of Linear Equations

线性方程是$a_1 x_1+\cdots+a_p x_p=b$形式的方程,其中$a_1, \ldots, a_p, b \in F$和$x_1, \ldots, x_p$是变量。标量$a_j$是系数标量$b$是常数项。

线性方程组,或线性系统,是一个或多个线性方程组的集合
$$
a_{11} x_1+\cdots+a_{1 p} x_p=b_1
$$
变量,如$a_{21} x_2+\cdots+a_{2 p} x_p=b_2$
. 系统的解决方案是$p$ -元组$\left(c_1, \ldots, c_p\right)$,这样
$$
a_{m 1} x_1+\cdots+a_{m p} x_p=b_m
$$
令$x_j=c_j$对每个$j$满足所有方程。系统的解集是所有解的集合。如果存在至少一个解,则系统是一致的;否则是不一致的。如果系统有相同的解集,它们就是等价的。如果所有的$j$都是$b_j=0$,则系统是齐次的。描述解集中一般向量的公式称为通解。
$$
a_{11} x_1+\cdots+a_{1 p} x_p=b_1
$$
对于系统$\begin{aligned} & a_{21} x_2+\cdots+a_{2 p} x_p=b_2 \ & \cdots\end{aligned}$, $m \times p$矩阵$A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 p} \ \vdots & \cdots & \vdots \ a_{m 1} & \cdots & a_{m p}\end{array}\right]$是系数
$$
a_{m 1} x_1+\cdots+a_{m p} x_p=b_m
$$
矩阵,$\mathbf{b}=\left[\begin{array}{c}b_1 \ \vdots \ b_m\end{array}\right]$是常数向量,$\mathbf{x}=\left[\begin{array}{c}x_1 \ \vdots \ x_p\end{array}\right]$
是未知向量。$m \times(p+1)$矩阵
$[A \mathbf{b}]$是系统的增广矩阵。通常用矩阵-向量方程$A \mathbf{x}=\mathbf{b}$来标识线性方程组。这是有效的,因为列向量$\mathbf{x}=\left[\begin{array}{c}c_1 \ \vdots \ c_p\end{array}\right]$满足$A \mathbf{x}=$$\mathbf{b}$当且仅当$\left(c_1, \ldots, c_p\right)$是线性系统的解。

数学代写|线性代数代写Linear algebra代考

数学代写|线性代数代写Linear algebra代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment