如果你也在 怎样代写网络安全network security这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。网络安全network security是一套技术,通过防止各种潜在威胁进入或在网络中扩散,来保护公司基础设施的可用性和完整性。
网络安全network security一个网络安全架构是由保护网络本身和在网络上运行的应用程序的工具组成。有效的网络安全策略采用了可扩展和自动化的多道防线。每个防御层都执行一套由管理员决定的安全策略。
my-assignmentexpert™ 网络安全network security作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的网络安全network security作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此网络安全network security作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的网络安全network security代写服务。我们的专家在数学Mathematics代写方面经验极为丰富,各种网络安全network security相关的作业也就用不着 说。
我们提供的网络安全network security及其相关学科的代写,服务范围广, 其中包括但不限于:
非线性方法 nonlinear method functional analysis
变分法 Calculus of Variations
数学代写|网络安全作业代写network security代考|Principle 1 – Formal Definitions
One of the key contributions of modern cryptography has been the recognition that formal definitions of security are essential for the proper design, study, evaluation, and usage of cryptographic primitives. Put bluntly:
If you don’t understand what you want to achieve, how can you possibly know when (or if) you have achieved it?
Formal definitions provide such understanding by giving a clear description of what threats are in scope and what security guarantees are desired. As such, definitions can help guide the design of cryptographic schemes. Indeed, it is much better to formalize what is required before the design process begins, rather than to come up with a definition post facto once the design is complete. The latter approach risks having the design phase end when the designers’ patience is exhausted (rather than when the goal has been met), or may result in a construction achieving more than is needed at the expense of efficiency.
Definitions also offer a way to evaluate and analyze constructions. With a definition in place, one can study a proposed scheme to see if it achieves the desired guarantees; in some cases, one can even prove a given construction secure (see Section 1.4.3) by showing that it meets the definition. On the flip side, definitions can be used to conclusively show that a given scheme is not secure, insofar as the scheme does not satisfy the definition. In particular, observe that the attacks in the previous section do not conclusively demonstrate that any of the schemes shown there is “insecure.” For example, the attack on the Vigenère cipher assumed that sufficiently long English text was being encrypted, but perhaps the Vigenère cipher is “secure” if short English text, or compressed text (which will have roughly uniform letter frequencies), is encrypted? It is hard to say without a formal definition in place.
数学代写|网络安全作业代写network security代考|Principle 2 – Precise Assumptions
Most modern cryptographic constructions cannot be proven secure unconditionally; such proofs would require resolving questions in the theory of computational complexity that seem far from being answered today. ${ }^{4}$ The result of this unfortunate state of affairs is that proofs of security typically rely on assumptions. Modern cryptography requires any such assumptions to be made explicit and mathematically precise. At the most basic level, this is because proofs of security require this. But there are other reasons as well:
- Validation of assumptions: By their very nature, assumptions are statements that are not proven but are instead conjectured to be true. In order to strengthen our belief in some assumption, it is necessary to study it: The more the assumption is examined and tested without being refuted, the more confident we are that the assumption is true. Furthermore, study of an assumption can provide evidence of its validity by showing that it is implied by some other assumption that is also widely believed.
If the assumption being relied upon is not precisely stated, it cannot be effectively studied and (potentially) refuted. Thus, a precondition to increasing our confidence in an assumption is having a precise statement of what exactly is being assumed
- Comparison of assumptions: Often in cryptography we are presented with two schemes that can both be proven to satisfy some definition, each based on a different assumption. Assuming all else is equal, which scheme should be preferred? If the assumption on which the first scheme is based is weaker than the assumption on which the second scheme is based (i.e., if the second assumption implies the first), then the first scheme is preferable since it may turn out that the second assumption is false while the first assumption is true. If the assumptions used by the two schemes are not comparable, then the general rule is to prefer the scheme that is based on the better-studied assumption in which there is presumably greater confidence.
- Understanding the necessary assumptions: An encryption scheme may be based on some underlying building block. If some weaknesses are later found in the building block, how can we tell whether the encryption scheme is still secure? If the underlying assumptions regarding the building block are made clear as part of proving security of the scheme, then we need only check whether the required assumptions are affected by the new weaknesses that were found.
数学代写|网络安全作业代写NETWORK SECURITY代考|Principle 3 – Proofs of Security
The two principles just described allow us to achieve our goal of providing rigorous proof that a construction satisfies a given definition under certain assumptions. Such proofs are especially important in the context of cryptography where there is an attacker who is actively trying to “break” some scheme. Proofs of security give an iron-clad guarantee – relative to the definition and assumptions – that no attacker will succeed; this is much better than taking an unprincipled or heuristic approach to the problem. Without a proof that no adversary with the specified resources can break some scheme, we are left only with our intuition that this is the case. Experience has shown that intuition in cryptography and computer security is disastrous. There are countless examples of unproven schemes that were broken, sometimes immediately and sometimes years after being developed.
Summary: Rigorous vs. Heuristic Approaches to Security
Reliance on definitions, assumptions, and proofs constitutes a rigorous approach to cryptography that is distinct from the informal approach of classical cryptography. Unfortunately, unprincipled, “off-the-cuff” solutions are still designed and deployed by those wishing to obtain a quick solution to a problem, or by those who are simply unknowledgable. We hope this book will contribute to an awareness of the rigorous approach and its importance in developing provably secure schemes.
网络安全作业代写
数学代写|网络安全作业代写NETWORK SECURITY代考|PRINCIPLE 1 – FORMAL DEFINITIONS
现代密码学的主要贡献之一是认识到安全的正式定义对于密码原语的正确设计、研究、评估和使用至关重要。说白了:
如果你不明白你想要达到什么,你怎么可能知道什么时候这r一世F你实现了吗?
正式定义通过明确描述范围内的威胁以及需要哪些安全保证来提供这种理解。因此,定义可以帮助指导密码方案的设计。事实上,在设计过程开始之前将所需内容正式化要好得多,而不是在设计完成后提出定义。当设计师的耐心耗尽时,后一种方法可能会导致设计阶段结束r一种吨H和r吨H一种n在H和n吨H和G这一种lH一种sb和和n米和吨, 或者可能导致建筑以牺牲效率为代价实现超过所需的效果。
定义还提供了一种评估和分析结构的方法。有了定义,就可以研究提议的方案,看看它是否达到了预期的保证;在某些情况下,甚至可以证明给定的结构是安全的s和和小号和C吨一世这n1.4.3通过证明它符合定义。另一方面,定义可用于最终表明给定方案是不安全的,只要该方案不满足定义。特别是,请注意上一节中的攻击并不能最终证明其中显示的任何方案都是“不安全的”。例如,对 Vigenère 密码的攻击假设足够长的英文文本被加密,但如果短英文文本或压缩文本, Vigenère 密码可能是“安全的”在H一世CH在一世llH一种在和r这在GHl是在n一世F这r米l和吨吨和rFr和q在和nC一世和s,是否加密?如果没有正式的定义,就很难说。
数学代写|网络安全作业代写NETWORK SECURITY代考|PRINCIPLE 2 – PRECISE ASSUMPTIONS
大多数现代密码结构不能无条件地被证明是安全的。这样的证明需要解决计算复杂性理论中的问题,而这些问题在今天看来还远未得到解答。4这种不幸的事态的结果是安全证明通常依赖于假设。现代密码学要求任何此类假设都必须明确且在数学上精确。在最基本的层面上,这是因为安全证明需要这样做。但还有其他原因:
- 假设的验证:就其本质而言,假设是未经证实但被推测为正确的陈述。为了加强我们对某些假设的信念,有必要对其进行研究:对假设进行的检查和测试越多,而没有被驳斥,我们就越相信该假设是正确的。此外,对假设的研究可以通过证明它被其他一些也被广泛相信的假设所暗示来提供其有效性的证据。
如果所依赖的假设没有被准确地陈述,它就不能被有效地研究和p这吨和n吨一世一种ll是驳斥。因此,增加我们对假设的信心的先决条件是对假设的确切内容有一个准确的陈述
- 假设的比较:通常在密码学中,我们会看到两种方案,它们都可以被证明满足某些定义,每种方案都基于不同的假设。假设所有其他条件都相同,应该首选哪种方案?如果第一种方案所基于的假设弱于第二种方案所基于的假设一世.和.,一世F吨H和s和C这nd一种ss在米p吨一世这n一世米pl一世和s吨H和F一世rs吨,那么第一种方案更可取,因为它可能会证明第二个假设是错误的,而第一个假设是正确的。如果两种方案使用的假设不可比较,则一般规则是首选基于经过更好研究的假设的方案,其中可能有更大的置信度。
- 理解必要的假设:加密方案可能基于一些底层构建块。如果稍后在构建块中发现一些弱点,我们如何判断加密方案是否仍然安全?如果作为证明方案安全性的一部分,关于构建块的基本假设已经明确,那么我们只需要检查所需的假设是否受到发现的新弱点的影响。
数学代写|网络安全作业代写NETWORK SECURITY代考|PRINCIPLE 3 – PROOFS OF SECURITY
刚刚描述的两个原则使我们能够实现我们的目标,即提供严格的证明,证明结构在某些假设下满足给定的定义。这样的证明在密码学的上下文中尤其重要,因为攻击者正在积极尝试“破坏”某些方案。相对于定义和假设而言,安全证明提供了一个铁定的保证,即任何攻击者都不会成功;这比对问题采取无原则或启发式的方法要好得多。如果没有证据证明拥有指定资源的对手无法破坏某些方案,我们只能凭直觉认为情况确实如此。经验表明,对密码学和计算机安全的直觉是灾难性的。有无数未经证实的计划被打破的例子,
总结:安全性的严格与启发式方法
对定义、假设和证明的依赖构成了一种严格的密码学方法,与经典密码学的非正式方法不同。不幸的是,那些希望快速解决问题的人,或者那些不为人知的人,仍然设计和部署了无原则的“即兴”解决方案。我们希望这本书将有助于了解严格的方法及其在开发可证明的安全方案中的重要性。
数学代写|网络安全作业代写network security代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。