如果你也在 怎样代写网络安全network security这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。网络安全network security是一套技术,通过防止各种潜在威胁进入或在网络中扩散,来保护公司基础设施的可用性和完整性。
网络安全network security一个网络安全架构是由保护网络本身和在网络上运行的应用程序的工具组成。有效的网络安全策略采用了可扩展和自动化的多道防线。每个防御层都执行一套由管理员决定的安全策略。
my-assignmentexpert™ 网络安全network security作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的网络安全network security作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此网络安全network security作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的网络安全network security代写服务。我们的专家在数学Mathematics代写方面经验极为丰富,各种网络安全network security相关的作业也就用不着 说。
我们提供的网络安全network security及其相关学科的代写,服务范围广, 其中包括但不限于:
非线性方法 nonlinear method functional analysis
变分法 Calculus of Variations
数学代写|网络安全作业代写network security代考|Pseudorandom Functions and Permutations
Pseudorandom functions (PRFs) generalize the notion of pseudorandom generators. Now, instead of considering “random-looking” strings we consider “random-looking” functions. As in our earlier discussion of pseudorandomness, it does not make much sense to say that any fixed function $f:{0,1}^{} \rightarrow{0,1}^{}$ is pseudorandom (in the same way it makes little sense to say that any fixed function is random). Instead, we must consider the pseudorandomness of a distribution on functions. Such a distribution is induced naturally by considering keyed functions, defined next.
A keyed function $F:{0,1}^{} \times{0,1}^{} \rightarrow{0,1}^{*}$ is a two-input function, where the first input is called the key and typically denoted by $k$. We say $F$ is efficient if there is a polynomial-time algorithm that computes $F(k, x)$ given $k$ and $x$. (We will only be interested in efficient keyed functions.) The security parameter $n$ dictates the key length, input length, and output length. That is, we associate with $F$ three functions $\ell_{\text {key }}, \ell_{\text {in }}$, and $\ell_{\text {out }}$; for any key $k \in{0,1}^{\ell_{k e y}(n)}$, the function $F_{k}$ is only defined for inputs $x \in{0,1}^{\ell_{i n}(n)}$, in which case $F_{k}(x) \in{0,1}^{\ell_{\text {out }}(n)}$. Unless stated otherwise, we assume for simplicity that $F$ is length preserving, meaning $\ell_{\text {key }}(n)=\ell_{\text {in }}(n)=\ell_{\text {out }}(n)=n$. (Note, however, that this is only to reduce notational clutter, and it is not uncommon to have pseudorandom functions that are not length preserving.) Let Func ${ }{n}$ denote the set of all functions mapping $n$-bit strings to $n$-bit strings. In typical usage a key $k \in{0,1}^{n}$ is chosen and fixed, and we are then interested in the single-input function $F{k}:{0,1}^{n} \rightarrow{0,1}^{n}$ defined by $F_{k}(x) \stackrel{\text { def }}{=} F(k, x)$ mapping $n$-bit input strings to $n$-bit output strings. A keyed function $F$ thus induces a distribution on functions in Func , where $^{2}$ the distribution is given by choosing a uniform key $k \in{0,1}^{n}$ and then considering the resulting single-input function $F_{k}$. We call $F$ pseudorandom if the function $F_{k}$ (for a uniform key $k$ ) is indistinguishable from a function chosen uniformly at random from the set Func $n$ of all functions having the same domain and range; that is, if no efficient adversary can distinguish-in a sense we more carefully define below-whether it is interacting with $F_{k}$ (for uniform $k$ ) or $f$ (where $f$ is chosen uniformly from Func ${ }_{n}$ ).
数学代写|网络安全作业代写network security代考|CPA-Security from a Pseudorandom Function
We focus here on constructing a CPA-secure fixed-length encryption scheme. By what we have said at the end of Section 3.4.3, this implies the existence of a CPA-secure encryption scheme for arbitrary-length messages. In Section $3.6$ we will discuss more efficient ways of encrypting messages of arbitrary length.
A naive attempt at constructing an encryption scheme from a pseudorandom permutation is to define $\operatorname{Enc}{k}(m)=F{k}(m)$. Although we expect that this “reveals no information about $m$ ” (since, if $f$ is a uniform permutation, then $f(m)$ is a uniform $n$-bit string for any $m)$, this method of encryption is deterministic and so cannot possibly be CPA-secure since encrypting the same plaintext twice will yield the same ciphertext.
Our CPA-secure construction uses randomized encryption. Specifically, we encrypt by applying a pseudorandom function to a random value $r \in{0,1}^{n}$ and XORing the output with the plaintext; the ciphertext includes both the result as well as $r$ (to enable the receiver to decrypt). See Figure $3.3$ and Construction 3.28. Encryption can again be viewed as XORing a pseudorandom pad with the plaintext (just like in the “pseudo-“one-time pad), with the major difference being the fact that here a fresh pseudorandom pad-that depends on $r$-is used each time a message is encrypted. (The pseudorandom pad is only “fresh” if the pseudorandom function is applied to a “fresh” value $r$ on which it has never been evaluated before. The proof below shows that with overwhelming probability this is always the case.)
网络安全作业代写
数学代写|网络安全作业代写NETWORK SECURITY代考|PSEUDORANDOM FUNCTIONS AND PERMUTATIONS
伪随机函数磷RFs概括伪随机生成器的概念。现在,我们不考虑“随机外观”的字符串,而是考虑“随机外观”的函数。正如我们之前对伪随机性的讨论,说任何固定函数 $f:{0,1}^{ } \rightarrow{0,1}^{ }$ 是伪随机性没有多大意义一世n吨H和s一种米和在一种是一世吨米一种ķ和sl一世吨吨l和s和ns和吨这s一种是吨H一种吨一种n是F一世X和dF在nC吨一世这n一世sr一种nd这米. 相反,我们必须考虑函数分布的伪随机性。这种分布是通过考虑接下来定义的键控函数自然得出的。
键控函数 $F:{0,1}^{} \times{0,1}^{} \rightarrow{0,1}^{*}$ is a two-input function, where the first input is called the key and typically denoted by $k$. We say $F$ is efficient if there is a polynomial-time algorithm that computes $F(k, x)$ given $k$ and $x$. (We will only be interested in efficient keyed functions.) The security parameter $n$ dictates the key length, input length, and output length. That is, we associate with $F$ three functions $\ell_{\text {key }}, \ell_{\text {in }}$, and $\ell_{\text {out }}$; for any key $k \in{0,1}^{\ell_{k e y}(n)}$, the function $F_{k}$ is only defined for inputs $x \in{0,1}^{\ell_{i n}(n)}$, in which case $F_{k}(x) \in{0,1}^{\ell_{\text {out }}(n)}$. Unless stated otherwise, we assume for simplicity that $F$ is length preserving, meaning $\ell_{\text {key }}(n)=\ell_{\text {in }}(n)=\ell_{\text {out }}(n)=n$. (Note, however, that this is only to reduce notational clutter, and it is not uncommon to have pseudorandom functions that are not length preserving.) Let Func ${ }{n}$ denote the set of all functions mapping $n$-bit strings to $n$-bit strings. In typical usage a key $k \in{0,1}^{n}$ is chosen and fixed, and we are then interested in the single-input function $F{k}:{0,1}^{n} \rightarrow{0,1}^{n}$ defined by $F_{k}(x) \stackrel{\text { def }}{=} F(k, x)$ mapping $n$-bit input strings to $n$-bit output strings. A keyed function $F$ thus induces a distribution on functions in Func , where $^{2}$ the distribution is given by choosing a uniform key $k \in{0,1}^{n}$ and then considering the resulting single-input function $F_{k}$. We call $F$ pseudorandom if the function $F_{k}$ (for a uniform key $k$ ) is indistinguishable from a function chosen uniformly at random from the set Func $n$ of all functions having the same domain and range; that is, if no efficient adversary can distinguish-in a sense we more carefully define below-whether it is interacting with $F_{k}$ (for uniform $k$ ) or $f$ (where $f$ is chosen uniformly from Func ${ }_{n}$ ).
数学代写|网络安全作业代写NETWORK SECURITY代考|CPA-SECURITY FROM A PSEUDORANDOM FUNCTION
我们在这里专注于构建一个 CPA 安全的固定长度加密方案。正如我们在第 3.4.3 节末尾所说的,这意味着存在用于任意长度消息的 CPA 安全加密方案。在部分3.6我们将讨论加密任意长度消息的更有效方法。
从伪随机排列构造加密方案的天真尝试是定义 $\operatorname{Enc} {k}米=F {k}米.一种l吨H这在GH在和和Xp和C吨吨H一种吨吨H一世s“r和在和一种lsn这一世nF这r米一种吨一世这n一种b这在吨米”(s一世nC和,一世FF一世s一种在n一世F这r米p和r米在吨一种吨一世这n,吨H和nF米一世s一种在n一世F这r米n−b一世吨s吨r一世nGF这r一种n是m)$,这种加密方法是确定性的,因此不可能是 CPA 安全的,因为两次加密相同的明文将产生相同的密文。
我们的 CPA 安全结构使用随机加密。具体来说,我们通过对随机值应用伪随机函数来加密r∈0,1n并将输出与明文进行异或;密文既包括结果,也包括r 吨这和n一种bl和吨H和r和C和一世在和r吨这d和Cr是p吨. 见图3.3和建筑 3.28。加密可以再次被视为对一个伪随机填充与明文进行异或运算j在s吨l一世ķ和一世n吨H和“ps和在d这−“这n和−吨一世米和p一种d, 主要区别在于这里有一个新的伪随机垫——这取决于r- 每次加密消息时使用。$r$-is used each time a message is encrypted. (The pseudorandom pad is only “fresh” if the pseudorandom function is applied to a “fresh” value $r$ on which it has never been evaluated before. The proof below shows that with overwhelming probability this is always the case.)
数学代写|网络安全作业代写network security代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。