Scroll Top
19th Ave New York, NY 95822, USA

数学代写|微积分note Derivatives of Inverse Functions

7.11 Derivatives and Limits of Sequences
When you have a function which is a limit of a sequence of functions, when can you say the derivative of the limit function is the limit of the derivatives of the functions in the sequence? The following theorem seems to be one of the best results available. It is based on the mean value theorem. Thus it is understood that the functions are real valued and defined on an interval of $\mathbb{R}$. First of all, recall Definition $6.9 .6$ on Page 111 listed here for convenience.

Definition 7.11.1 Let $\left{f_{n}\right}$ be a sequence of functions defined on $D$. Then $\left{f_{n}\right}$ is said to converge uniformly to $f$ if it converges pointwise to $f$ and for every $\varepsilon>0$ there exists $N$ such that for all $n \geq N,\left|f(x)-f_{n}(x)\right|<\varepsilon$ for all $x \in D$.
To save on notation, denote by $|k| \equiv \sup {|k(\xi)|: \xi \in D}$. Then
because for each $\xi \in D,|k(\xi)+l(\xi)| \leq|k|+|l|$ and taking sup yields 7.18. From the definition of uniform convergence, you see that $f_{n}$ converges uniformly to $f$ is the same as saying $\lim {n \rightarrow \infty}\left|f{n}-f\right|=0$. Now here is the theorem. Note how the mean value theorem is one of the principal parts of the argument.

Theorem 7.11.2 Let $(a, b)$ be a finite open interval and let $f_{k}:(a, b) \rightarrow \mathbb{R}$ be differentiable and suppose there exists $x_{0} \in(a, b)$ such that
$\left{f_{k}\left(x_{0}\right)\right}$ converges,
$\left{f_{k}^{\prime}\right}$ converges uniformly to a function $g$ on $(a, b)$.
Then there exists a function $f$ defined on $(a, b)$ such that
$$
f_{k} \rightarrow f \text { uniformly }
$$
and $f^{\prime}=g .$ Proof: Let $c \in(a, b)$ and define
Proof: Let $c \in(a, b)$ and define $$ g_{n}(x, c) \equiv\left{\begin{array}{l}\frac{f_{n}(x)-f_{n}(c)}{x-c} \text { if } x \neq c \ f_{n}^{\prime}(c) \text { if } x=c\end{array}\right. $$
Also let $|h| \equiv \sup {|h(x)|: x \in(a, b)}$. Thus $h_{k} \rightarrow h$ uniformly means $\left|h_{k}-h\right| \rightarrow 0$.
Claim 1: For each $c, x \rightarrow g_{n}(x, c)$ converges uniformly to a continuous function $h_{c}$, on $(a, b)$ and $h_{c}(c)=g(c)$.

Proof: First note that each $x \rightarrow g_{n}(x, c)$ is continuous. Next consider the claim about uniform convergence. Let $x \neq c$. Then by the mean value theorem applied to the function $x \rightarrow f_{n}(x)-f_{m}(x)$
$$
\begin{aligned}
&\left|g_{n}(x, c)-g_{m}(x, c)\right| \
=&\left|\frac{f_{n}(x)-f_{m}(x)-\left(f_{n}(c)-f_{m}(c)\right)}{x-c}\right| \
=&\left|f_{n}^{\prime}(\xi)-f_{m}^{\prime}(\xi)\right| \leq\left|f_{n}^{\prime}(\xi)-g(\xi)\right|+\left|g(\xi)-f_{m}^{\prime}(\xi)\right| \
\leq &\left|f_{n}^{\prime}-g\right|+\left|f_{m}^{\prime}-g\right|
\end{aligned}
$$
By the assumption that $\left{f_{n}^{\prime}\right}$ converges uniformly to $g$, it follows each of the last two terms converges to 0 as $n, m \rightarrow \infty$. If $x=c$, then
$$
\left|g_{n}(c, c)-g_{m}(c, c)\right|=\left|f_{n}^{\prime}(c)-f_{m}^{\prime}(c)\right| \leq\left|f_{n}^{\prime}-g\right|+\left|f_{m}^{\prime}-g\right|
$$Thus $x \rightarrow g_{n}(x, c)$ is uniformly Cauchy and must converge uniformly to a continuous function $h_{c}$ by Theorem 6.9.7 and Corollary 6.9.10. Also $h_{c}(c)=g(c)$ by the assumption that $f_{k}^{\prime}$ converges uniformly to $g$. This proves the first claim.
Claim 2: $f_{n}$ converges uniformly to a function $f$.
Proof: From the definition of $g_{n}$ in the case where $c=x_{0}$,
Hence from the above claim, $f_{n}$ converges uniformly because it is given that $f_{n}\left(x_{0}\right)$ converges to $f\left(x_{0}\right)$.
Now to complete the proof of the theorem, for $c$ given and $x \neq c$,
$$
\frac{f(x)-f(c)}{x-c}=\lim {n \rightarrow \infty} \frac{f{n}(x)-f_{n}(c)}{x-c}=\lim {n \rightarrow \infty} g{n}(x, c)=h_{c}(x) .
$$
Since $h_{c}$ is continuous,
$$
f^{\prime}(c)=\lim {x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim {x \rightarrow c} h_{c}(x)=h_{c}(c)=g(c)
$$

7.11 序列的导数和极限
当你有一个函数是函数序列的极限时,你什么时候可以说极限函数的导数是序列中函数的导数的极限?以下定理似乎是可用的最佳结果之一。它基于中值定理。因此可以理解,这些函数是实数值的,并且定义在 $\mathbb{R}$ 的区间上。首先,为方便起见,请回忆第 111 页上列出的定义 $6.9 .6$。
定义 7.11.1 令 $\left{f_{n}\right}$ 为定义在 $D$ 上的函数序列。那么如果 $\left{f_{n}\right}$ 逐点收敛到 $f$ 并且对于每个 $\varepsilon>0$ 存在 $N$ 使得对于所有$n \geq N,\left|f(x)-f_{n}(x)\right|<\varepsilon$ 对于所有 $x \in D$。
为了节省符号,用 $|k| 表示\equiv \sup {|k(\xi)|: \xi \in D}$。然后
因为对于每个 $\xi \in D,|k(\xi)+l(\xi)| \leq|k|+|l|$ 并接受 sup 产生 7.18。从一致收敛的定义可以看出,$f_{n}$ 一致收敛到 $f$ 与 $\lim {n \rightarrow \infty}\left|f{n}-f\right 是一样的|=0$。现在这是定理。注意均值定理是论证的主要部分之一。
定理 7.11.2 令 $(a, b)$ 为有限开区间,令 $f_{k}:(a, b) \rightarrow \mathbb{R}$ 可微,假设存在 $x_{0} \ in(a, b)$ 使得
$\left{f_{k}\left(x_{0}\right)\right}$ 收敛,
$\left{f_{k}^{\prime}\right}$ 一致地收敛到 $(a, b)$ 上的函数 $g$。
那么存在一个定义在 $(a, b)$ 上的函数 $f$ 使得
$$
f_{k} \rightarrow f \text { 均匀 }
$$
和 $f^{\prime}=g .$ 证明:设 $c \in(a, b)$ 并定义
证明:设 $c \in(a, b)$ 并定义 $$ g_{n}(x, c) \equiv\left{\begin{array}{l}\frac{f_{n}(x) -f_{n}(c)}{xc} \text { if } x \neq c \ f_{n}^{\prime}(c) \text { if } x=c\end{array}\right . $$
也让 $|h| \equiv \sup {|h(x)|: x \in(a, b)}$。因此 $h_{k} \rightarrow h$ 统一表示 $\left|h_{k}-h\right| \rightarrow 0$。
主张 1:对于每个 $c,x \rightarrow g_{n}(x, c)$ 在 $(a, b)$ 和 $h_{c}(c )=g(c)$。
证明:首先注意每个 $x \rightarrow g_{n}(x, c)$ 是连续的。接下来考虑关于一致收敛的主张。设 $x \neq c$。然后通过中值定理应用于函数 $x \rightarrow f_{n}(x)-f_{m}(x)$
$$
\开始{对齐}
&\left|g_{n}(x, c)-g_{m}(x, c)\right| \
=&\left|\frac{f_{n}(x)-f_{m}(x)-\left(f_{n}(c)-f_{m}(c)\right)}{xc}\对| \
=&\left|f_{n}^{\prime}(\xi)-f_{m}^{\prime}(\xi)\right| \leq\left|f_{n}^{\prime}(\xi)-g(\xi)\right|+\left|g(\xi)-f_{m}^{\prime}(\xi) \对| \
\leq &\left|f_{n}^{\prime}-g\right|+\left|f_{m}^{\prime}-g\right|
\end{对齐}
$$
通过假设 $\left{f_{n}^{\prime}\right}$ 一致地收敛到 $g$,它遵循最后两项收敛到 0 作为 $n, m \rightarrow \infty美元。如果$x=c$,那么
$$
\left|g_{n}(c, c)-g_{m}(c, c)\right|=\left|f_{n}^{\prime}(c)-f_{m}^{\prime }(c)\右| \leq\left|f_{n}^{\prime}-g\right|+\left|f_{m}^{\prime}-g\right|
$$因此 $x \rightarrow g_{n}(x, c)$ 是一致的 Cauchy 并且必须一致地收敛到定理 6.9.7 和推论 6.9.10 的连续函数 $h_{c}$。还假设 $f_{k}^{\prime}$ 一致地收敛到 $g$,$h_{c}(c)=g(c)$。这证明了第一个说法。
主张 2:$f_{n}$ 一致地收敛到函数 $f$。
证明:由$g_{n}$的定义在$c=x_{0}$的情况下,
因此,根据上述主张,$f_{n}$ 一致收敛,因为给定 $f_{n}\left(x_{0}\right)$ 收敛到 $f\left(x_{0}\right)$ .
现在完成定理的证明,对于给定的 $c$ 和 $x \neq c$,
$$
\frac{f(x)-f(c)}{xc}=\lim {n \rightarrow \infty} \frac{f{n}(x)-f_{n}(c)}{xc}= \lim {n \rightarrow \infty} g{n}(x, c)=h_{c}(x) 。
$$
由于 $h_{c}$ 是连续的,
$$
f^{\prime}(c)=\lim {x \rightarrow c} \frac{f(x)-f(c)}{xc}=\lim {x \rightarrow c} h_{c}( x)=h_{c}(c)=g(c)
$$
微积分note Compactness

微积分note Integer Multiples of Irrational Numbers 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

组合数学代考

统计作业代写

集合论数理逻辑代写案例

凸优化代写

统计exam代考

Related Posts

Leave a comment