Scroll Top
19th Ave New York, NY 95822, USA

数学代写|Tightly stretched string数值分析代考

数学代写| Tightly stretched string 数值分析代考

数值分析代写

  • Imagine a tightly stretched string, in which the slope of the string is small.
  • The motion can be assumed to be vertical $y=u(x, t)$
  • If $\theta$ denotes the angle between the horizon and a small segment, then the slope of the string is
    $$
    \frac{\mathrm{d} y}{\mathrm{~d} x}=\tan \theta(x, t)=\frac{\partial u}{\partial x}
    $$
  • If the mass density is denoted by $\rho_{0}(x)$, then the total mass for a t
    hin segment is $\rho_{0}(x) \Delta x$.
  • A string is assumed to be perfectly flexible, if there is no resistence or bending
    (the force exerted by the rest of the string on the end-points of the segment is tangent to the string.)
  • Let us denote the magnitude of this force at position $x$ by $T(x, t)$. (The tangential force is due to the tension in the string.)
  • By the Newton’s law $\mathrm{F}=m a$,
    $$
    \begin{aligned}
    \rho_{0}(x) \Delta x \frac{\partial^{2} u}{\partial t^{2}}=T(x+&\Delta x, t) \sin \theta(x+\Delta x, t) \
    &-T(x, t) \sin \theta(x, t)+\rho_{0}(x) \Delta x Q(x, t)
    \end{aligned}
    $$
    here $Q$ is any external force (e.g gravity).
  • $T(x, t)$ may be approximated by a constant $T_{0}$,
    $$
    \rho_{0}(x) \frac{\partial^{2} u}{\partial t^{2}}=T_{0}
    \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \rho_{0}(x) .
    $$
  • Assuming no external force, let $Q(x, t)=0$ which implies that
    $$
    \rho_{0}(x) \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}
    $$
  • Rearranging, we write,
    $$
    \frac{\partial^{2} u}{\partial t^{2}}=c^{2}(x) \frac{\partial^{2} u}{\partial x^{2}} \quad \text { where } c^{2}(x)=\frac{T_{0}}{\rho_{0}(x)}
    $$
    $c$ is the velocity, an important constant.
  • Assuming uniform density $\rho(x)=\rho_{0}$, and letting $c_{0}=T_{0} / \rho_{0}$, we arrive at the wave equation
    $$
    u_{t t}-c_{0}^{2} u_{x x}=0 \quad x \in(0, L), \quad t \in(0, L)
    $$
  • The PDE requires two initial conditions, as well as the boundary condition
    $$
    u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=v_{0}(x), \quad u(0, t)=u_{\ell}, \quad u(L, t)=u_{r} .
    $$
  • We have derived three different PDEs,
  • The heat equation (parabolic)
    $$
    \begin{aligned}
    u_{t}-\kappa u_{x x}=0, & x \in(0, L), \quad t \in(0, L) \
    u(0, t)=u_{\ell} & u(L, t)=u_{r} \quad u(x, 0)=u_{0}(x)
    \end{aligned}
    $$
  • The Laplace’s equation (elliptic)
    $$
    \begin{aligned}
    &u_{x x}+u_{y y}=0, \quad x \in(0, L), \quad y \in(0, L) \
    &u(x, 0)=u_{u}(x) \quad u(x, L)=u_{d}(x) \
    &u(0, y)=u_{\ell}(y) \quad u(L, y)=u_{r}(y)
    \end{aligned}
    $$
  • The wave equation (hyperbolic)
    $$
    \begin{aligned}
    &u_{t t}-c^{2} u_{x x}=0, \quad x \in(0, L), \quad y \in(0, L) \
    &u(0, t)=u_{\ell}() \quad u(L, t)=u_{r} \quad u(x, 0)=u_{0}(x) \quad u_{t}(x, 0)=v_{0}(x)
    \end{aligned}
    $$
  • Relation to conic sections
    $$
    t-x^{2}=r \quad x^{2}+y^{2}=r \quad t^{2}-x^{2}=r
    $$
数学代写| TIGHTLY STRETCHED STRING 数值分析代考

数值分析代考

  • 想象一根拉得很紧的绳子,其中绳子的斜率很小。
  • 可以假设运动是垂直的 $y=u(x, t)$
  • 如果 $\theta$ 表示地平线和一个小段之间的角度,那么字符串的斜率是
    $$
    \frac{\mathrm{d} y}{\mathrm{~d} x}=\tan \theta(x, t)=\frac{\partial u}{\partial x}
    $$
  • 如果质量密度用 $\rho_{0}(x)$ 表示,那么 t 的总质量
    hin 段是 $\rho_{0}(x) \Delta x$。
  • 如果没有阻力或弯曲,则假定弦具有完全的柔韧性
    (弦的其余部分施加在段的端点上的力与弦相切。)
  • 让我们用 $T(x, t)$ 来表示位置 $x$ 处的力的大小。 (切向力是由于弦中的张力。)
  • 根据牛顿定律 $\mathrm{F}=m a$,
    $$
    \开始{对齐}
    \rho_{0}(x) \Delta x \frac{\partial^{2} u}{\partial t^{2}}=T(x+&\Delta x, t) \sin \theta(x+\增量 x, t) \
    &-T(x, t) \sin \theta(x, t)+\rho_{0}(x) \Delta x Q(x, t)
    \end{对齐}
    $$
    这里 $Q$ 是任何外力(例如重力)。
  • $T(x, t)$ 可以用一个常数 $T_{0}$ 来近似,
    $$
    \rho_{0}(x) \frac{\partial^{2} u}{\partial t^{2}}=T_{0}
    \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \rho_{0}(x) 。
    $$
  • 假设没有外力,让 $Q(x, t)=0$ 这意味着
    $$
    \rho_{0}(x) \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{ 2}}
    $$
  • 重新排列,我们写,
    $$
    \frac{\partial^{2} u}{\partial t^{2}}=c^{2}(x) \frac{\partial^{2} u}{\partial x^{2}} \四边形 \text { 其中 } c^{2}(x)=\frac{T_{0}}{\rho_{0}(x)}
    $$
    $c$ 是速度,一个重要的常数。
  • 假设均匀密度 $\rho(x)=\rho_{0}$,并让 $c_{0}=T_{0} / \rho_{0}$,我们得到波动方程
    $$
    u_{t t}-c_{0}^{2} u_{x x}=0 \quad x \in(0, L), \quad t \in(0, L)
    $$
  • PDE 需要两个初始条件以及边界条件
    $$
    u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=v_{0}(x), \quad u(0, t)=u_{\ell}, \quad u(L, t)=u_{r} 。
    $$
  • 我们推导出了三种不同的偏微分方程,
  • 热方程(抛物线)
    $$
    \开始{对齐}
    u_{t}-\kappa u_{x x}=0, & x \in(0, L), \quad t \in(0, L) \
    u(0, t)=u_{\ell} & u(L, t)=u_{r} \quad u(x, 0)=u_{0}(x)
    \end{对齐}
    $$
  • 拉普拉斯方程(椭圆)
    $$
    \开始{对齐}
    &u_{x x}+u_{y y}=0, \quad x \in(0, L), \quad y \in(0, L) \
    &u(x, 0)=u_{u}(x) \quad u(x, L)=u_{d}(x) \
    &u(0, y)=u_{\ell}(y) \quad u(L, y)=u_{r}(y)
    \end{对齐}
    $$
  • 波动方程(双曲线)
    $$
    \开始{对齐}
    &u_{t t}-c^{2} u_{x x}=0, \quad x \in(0, L), \quad y \in(0, L) \
    &u(0, t)=u_{\ell}() \quad u(L, t)=u_{r} \quad u(x, 0)=u_{0}(x) \quad u_{t}( x, 0)=v_{0}(x)
    \end{对齐}
    $$
  • 与圆锥截面的关系
    $$
    t-x^{2}=r \quad x^{2}+y^{2}=r \quad t^{2}-x^{2}=r
    $$
数学代写| Integral of interpolant $int_{a}^{b} p_{n} mathrm{~d} x$ approximates $int_{a}^{b} f mathrm{~d} x$ 数值分析代考

数学代写| Chebyshev polynomials 数值分析代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

时间序列分析代写

数论代考

统计作业代写

统计exam代考

离散数学代写

复分析代写

抽象代数代写

随机过程代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程

Matlab代写

Related Posts

Leave a comment