Scroll Top
19th Ave New York, NY 95822, USA

信号处理代写signal processing代考|Stochastic processes

如果你也在 怎样代写信号处理signal processing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。信号处理signal processing是一个电气工程的子领域,主要是分析、修改和合成信号,如声音、图像和科学测量。信号处理技术可用于提高传输、存储效率和主观质量,也可用于强调或检测测量信号中感兴趣的成分。

代写连续时间信号处理signal processing


连续时间信号处理是针对随着连续域的变化而变化的信号(不考虑一些单独的中断点)。 函数和确定性信号的连续时间过滤


代写离散时间信号处理signal processing

离散时间信号处理是针对采样信号的,只定义在离散的时间点上,因此在时间上是量化的,但在幅度上不是。(见下文),并且仍被用于千兆赫兹信号的高级处理。


代写数字信号处理signal processing


主文章。数字信号处理(FFT),有限脉冲响应(FIR)滤波器,无限脉冲响应(IIR)滤波器,以及自适应滤波器,如维纳和卡尔曼滤波器。

In comparison, the output viewpoint examines how a single point in the output signal is determined by the various values from the input signal. Just as with discrete signals, each instantaneous value in the output signal is affected by a section of the input signal, weighted by the impulse response flipped left-for-right. In the discrete case, the signals are multiplied and summed. In the continuous case, the signals are multiplied and integrated. In equation form:

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau
$$

The convolution integral. This equation defines the meaning of: $y(t)=x(t) * h(t)$.

This equation is called the convolution integral, and is the twin of the convolution sum ) used with discrete signals.shows how this equation can be understood. The goal is to find an expression for calculating the value of the output signal at an arbitrary time, $t$. The first step is to change the independent variable used to move through the input signal and the impulse response. That is, we replace $t$ with $\tau$ (a lower case Greek tau). This makes $x(t)$ and $h(t)$ become $x(\tau)$ and $h(\tau)$, respectively. This change of variable names is needed because $t$ is already being used to represent the point in the output signal being calculated. The next step is to flip the impulse response left-for-right, turning it into $h(-\tau)$. Shifting the flipped impulse response to the location $t$, results in the expression becoming $h(t-\tau)$. The input signal is then weighted by the flipped and shifted impulse response by multiplying the two, i.e., $x(\tau) h(t-\tau)$. The value of the output signal is then found by integrating this weighted input signal from negative to positive infinity.

Convolution viewed from the input side. The input signal, $x(t)$, is divided into narrow segments, each acting as an impulse to the system. The output signal, $y(t)$, is the sum of the resulting scaled and shifted impulse responses. This illustration shows how three points in the input signal contribute to the output signal.

my-assignmentexpert™ 信号处理signal processing作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的信号处理signal processing作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此信号处理signal processing作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在信号处理signal processing作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在信号处理signal processing代写方面经验极为丰富,各种信号处理signal processing相关的作业也就用不着 说。

我们提供的信号处理signal processing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • 微分方程 Differential equations
  • 递归关系 Recurrence relations
  • 变换理论 Time-frequency analysis – for dealing with non-stationary signals [14]
  • 时频分析 Transformation theory Time-frequency analysis – for dealing with non-stationary signals
  • 频谱估计 Spectral estimation – for determining the spectral content
  • 统计信号处理 Statistical signal processing – for analyzing and extracting information based on the stochastic properties of signals and noise
  • 线性时不变系统理论和变换理论 Linear time-invariant systems theory and transformation theory
  • 多项式信号处理 Polynomial signal processing – analysis of systems related to inputs and outputs using polynomials
信号处理代写signal processing代考|Stochastic processes

信号处理代写signal processing代考|deterministic

In real-world applications, time-varying quantities are usually modelled by a stochastic process, that is, an ordered collection of random variables. For ergodic processes, the theoretical mean can be approximated by time averages, however, for non-ergodic processes time averages do not necessarily match averages in the probability space and therefore the theoretical statistics are not always well approximated using observed samples.

To illustrate this concept, consider the deterministic sinusoidal signal $x[n]=\sin \left(2 \pi 5 \times 10^{-3} n\right)$ corrupted by independent and identically distributed (i.i.d.) Gaussian noise $\eta[n] \sim \mathcal{N}(0,1)$, to give $y[n]=x[n]+\eta[n]$. By averaging multiple realisations of the process $\mathbf{y}=[y[1], y[2], \ldots, y[N]]^{T}$, we aim to obtain reduced-noise estimates of the process $\mathbf{x}$, in terms of the Signal-to-Noise (SNR) ratio. If $M$ independent realisations of the process $\mathbf{y}$, denoted by $\mathbf{y}{1: M}$, are considered to compute an ensemble estimate, the variance of such an estimate is given by $$ \begin{aligned} \sigma{M}^{2} &=\mathbb{E}\left{\left(\mathbb{E}{\mathbf{y}}-\frac{1}{M} \sum_{i=1}^{M} \mathbf{y}{i}\right)^{2}\right}=\mathbb{E}\left{\left(\frac{1}{M} \sum{i=1}^{M} \boldsymbol{\eta}{i}\right)^{2}\right} \ &=\frac{1}{M^{2}} \mathbb{E}\left{\left(\sum{i=1}^{M} \sum_{j=1}^{M} \boldsymbol{\eta}{i}^{T} \boldsymbol{\eta}{j}\right)\right}=\frac{1}{M^{2}}\left(\sum_{i=1}^{M} \sum_{j=1}^{M} \mathbb{E}\left{\boldsymbol{\eta}{i}^{T} \boldsymbol{\eta}{j}\right}\right)
\end{aligned}
$$
where every noise sequence $\boldsymbol{\eta}{j}$ comprises realisations of zero-mean and uncorrelated random variables $\eta[n]$. We know that $\mathbb{E}\left{\boldsymbol{\eta}{i}^{T} \boldsymbol{\eta}{j}\right}=\sigma{\boldsymbol{\eta}}^{2}$ iff $i=j$, and zero otherwise, hence
$$
\sigma_{M}^{2}=\frac{1}{M^{2}}\left(M \sigma_{\eta}^{2}\right)=\frac{\sigma_{\eta}^{2}}{M} .
$$
Therefore, the SNR of an $M$-member ensemble estimate increases linearly with the number of members of the ensemble
$$
S N R=\frac{\sigma_{\mathbf{y}}^{2}}{\sigma_{M}^{2}}=\frac{\sigma_{\mathbf{y}}^{2}}{\sigma_{\boldsymbol{\eta}}^{2}} M, \text { and in } \mathrm{dB}: S N R_{d B}=\log {10}\left(\frac{\sigma{\mathbf{y}}^{2}}{\sigma_{\boldsymbol{\eta}}^{2}} M\right)[d B] .
$$
Figure 1 shows a realisation of $\mathbf{y}$, together with ensemble averages for $M=10,50,200,1000$ and the original deterministic signal x. Additionally, the bottom plot shows the SNR computed from the ensemble averages and its theoretical value in Eq. (5). Observe that for nonstationary signals, time-average will not provide meaningful approximations of the process statistics (e.g. sample mean).

We now study three stochastic processes generated by the following MATLAB codes, which give an ensemble of $M$ realisations of $N$ samples for each stochastic process.

信号处理代写SIGNAL PROCESSING代考|MATLA

Run the above MATLAB codes and explain the differences between the time averages and ensemble averages, together with the stationarity and ergodicity of the process generated by the following steps:

  1. Compute the ensemble mean and standard deviation for each process and plot them as a function of time. For all
    [10] the above random processes, use $M=100$ members of the ensemble, each of length $N=100$. Comment on the stationarity of each process.
  2. Generate $M=4$ realisations of length $N=1000$ for each process, and calculate the mean and standard deviation
    [10] for each realisation. Comment on the ergodicity of each process.
  3. Write a mathematical description of each of the three stochastic processes. Calculate the theoretical mean and
    [10] variance for each case and compare the theoretical results with those obtained by sample averaging.
信号处理代写signal processing代考|Stochastic processes

信号处理代写

信号处理代写SIGNAL PROCESSING代考|DETERMINISTIC

在实际应用中,时变量通常由随机过程建模,即随机变量的有序集合。对于遍历过程,理论平均值可以通过时间平均值来近似,但是,对于非遍历过程,时间平均值不一定与概率空间中的平均值匹配,因此理论统计数据并不总是使用观察到的样本很好地近似。

为了说明这个概念,考虑确定性正弦信号X[n]=没有⁡(2圆周率5×10−3n)被独立同分布破坏一世.一世.d.高斯噪声这[n]∼ñ(0,1), 给和[n]=X[n]+这[n]. 通过对过程的多个实现进行平均和=[和[1],和[2],…,和[ñ]]吨,我们的目标是获得过程的降噪估计X,就信噪比而言小号ñR比率。如果米过程的独立实现和,记为
其中每个噪声序列
图1显示了一个实现和,连同整体平均值米=10,50,200,1000和原始确定性信号 x。此外,底部图显示了从集合平均值计算的 SNR 及其在方程式中的理论值。5. 观察到对于非平稳信号,时间平均不会提供有意义的过程统计近似值和.G.s一种米p一世和米和一种n.

我们现在研究由以下 MATLAB 代码生成的三个随机过程,它们给出了一个集合米的实现ñ每个随机过程的样本。

信号处理代写SIGNAL PROCESSING代考|MATLA

运行上面的 MATLAB 代码,解释时间平均值和集合平均值之间的差异,以及以下步骤生成的过程的平稳性和遍历性:

  1. 计算每个过程的整体平均值和标准差,并将它们绘制为时间的函数。对所有人
    10上述随机过程,使用米=100乐团的成员,每个人的长度ñ=100. 评论每个过程的平稳性。
  2. 产生米=4长度的实现ñ=1000对于每个过程,并计算均值和标准差
    10对于每个实现。评论每个过程的遍历性。
  3. 写出三个随机过程中每一个的数学描述。计算理论平均值和
    10每个案例的方差,并将理论结果与通过样本平均获得的结果进行比较。
信号处理代写signal processing代考|Random signals and stochastic processes

信号处理代写signal processing代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

统计代考

统计是汉语中的“统计”原有合计或汇总计算的意思。 英语中的“统计”(Statistics)一词来源于拉丁语status,是指各种现象的状态或状况。

数论代考

数论(number theory ),是纯粹数学的分支之一,主要研究整数的性质。 整数可以是方程式的解(丢番图方程)。 有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。 透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)

数值分析代考

数值分析(Numerical Analysis),又名“计算方法”,是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科。 它以数字计算机求解数学问题的理论和方法为研究对象,为计算数学的主体部分。

随机过程代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment