Scroll Top
19th Ave New York, NY 95822, USA

澳洲代考|凸优化代考Convex optimization代考|COMPRESSED SENSING: WHAT IS IT ABOUT?

如果你也在 怎样代写凸优化Convex optimization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。凸优化Convex optimization是数学优化的一个子领域,研究的是凸集上凸函数最小化的问题。许多类凸优化问题允许采用多项式时间算法,而数学优化一般来说是NP-hard。

凸优化Convex optimization在许多学科中都有应用,如自动控制系统、估计和信号处理、通信和网络、电子电路设计、数据分析和建模、金融、统计(最佳实验设计)、和结构优化,其中近似概念被证明是有效的。

my-assignmentexpert™凸优化Convex optimization代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的凸优化Convex optimization作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此凸优化Convex optimization作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在澳洲代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的澳洲代写服务。我们的专家在凸优化Convex optimization代写方面经验极为丰富,各种凸优化Convex optimization相关的作业也就用不着 说。

我们提供的凸优化Convex optimization及其相关学科的代写,服务范围广, 其中包括但不限于:

澳洲代考|凸优化代考Convex optimization代考|COMPRESSED SENSING: WHAT IS IT ABOUT?

澳洲代考|凸优化代考Convex optimization代考|Signal Recovery Problem

One of the basic problems in Signal Processing is the problem of recovering a signal $x \in \mathbf{R}^{n}$ from noisy observations
$$
y=A x+\eta
$$
of a linear image of the signal under a given sensing mapping $x \mapsto A x: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$; in (1.1), $\eta$ is the observation error. Matrix $A$ in (1.1) is called sensing matrix.
Recovery problems of the outlined types arise in many applications, including, but by far not reducing to,

  • communications, where $x$ is the signal sent by the transmitter, $y$ is the signal recorded by the receiver, and $A$ represents the communication channel (reflecting, e.g., dependencies of decays in the signals’ amplitude on the transmitter-receiver distances); $\eta$ here typically is modeled as the standard (zero mean, unit covariance matrix) $m$-dimensional Gaussian noise; ${ }^{1}$
  • image reconstruction, where the signal $x$ is an image – 2D array in the usual photography, or a 3D array in tomography – and $y$ is data acquired by the imaging device. Here $\eta$ in many cases (although not always) can again be modeled as the standard Gaussian noise;
  • linear regression, arising in a wide range of applications. In linear regression, one is given $m$ pairs “input $a^{i} \in \mathbf{R}^{n}$ ” to a “black box,” with output $y_{i} \in \mathbf{R}$. Sometimes we have reason to believe that the output is a corrupted by noise version of the “existing in nature,” but unobservable, “ideal output” $y_{i}^{*}=x^{T} a^{i}$ which is just a linear function of the input (this is called “linear regression model,” with inputs $a^{i}$ called “regressors”). Our goal is to convert actual observations $\left(a^{i}, y_{i}\right), 1 \leq i \leq m$, into estimates of the unknown “true” vector of parameters $x$. Denoting by $A$ the matrix with the rows $\left[a^{i}\right]^{T}$ and assembling individual observations $y_{i}$ into a single observation $y=\left[y_{1} ; \ldots ; y_{m}\right] \in \mathbf{R}^{m}$, we arrive at the problem of recovering vector $x$ from noisy observations of $A x$. Here again the most popular model for $\eta$ is the standard Gaussian noise.

澳洲代考|凸优化代考Convex optimization代考|Signal Recovery: Parametric and nonparametric cases

Recovering signal $x$ from observation $y$ would be easy if there were no observation noise $(\eta=0)$ and the rank of matrix $A$ were equal to the dimension $n$ of the signals. In this case, which arises only when $m \geq n$ (“more observations than unknown parameters”), and is typical in this range of $m$ and $n$, the desired $x$ would be the unique solution to the system of linear equations, and to find $x$ would be a simple problem of Linear Algebra. Aside from this trivial “enough observations, no noise” case, people over the years have looked at the following two versions of the recovery problem:

Parametric case: $m \gg n, \eta$ is nontrivial noise with zero mean, say, standard Gaussian. This is the classical statistical setup with the emphasis on how to use numerous available observations in order to suppress in the recovery, to the extent possible, the influence of observation noise.

澳洲代考|凸优化代考Convex optimization代考|COMPRESSED SENSING: WHAT IS IT ABOUT?

凸优化代写

澳洲代考|凸优化代考CONVEX OPTIMIZATION代考|SIGNAL RECOVERY PROBLEM

信号处理的基本问题之一是恢复信号的问题X∈Rn从嘈杂的观察中
是=一个X+这
给定传感映射下信号的线性图像X↦一个X:Rn→R米; 在1.1, 这是观察误差。矩阵一个在1.1称为传感矩阵。
概述类型的恢复问题出现在许多应用程序中,包括但到目前为止不归结为:

  • 通讯,在哪里X是发射机发送的信号,是是接收器记录的信号,并且一个代表沟通渠道r和Fl和C吨一世nG,和.G.,d和p和nd和nC一世和s○Fd和C一个是s一世n吨H和s一世Gn一个ls′一个米pl一世吨在d和○n吨H和吨r一个ns米一世吨吨和r−r和C和一世在和rd一世s吨一个nC和s; 这这里通常被建模为标准和和r○米和一个n,在n一世吨C○在一个r一世一个nC和米一个吨r一世X 米-维高斯噪声;1
  • 图像重建,其中信号X是图像——通常摄影中的 2D 阵列,或断层摄影中的 3D 阵列——和是是成像设备获取的数据。这里这在很多情况下一个l吨H○在GHn○吨一个l在一个是s可以再次建模为标准高斯噪声;
  • 线性回归,在广泛的应用中出现。在线性回归中,给出一个米对“输入一个一世∈Rn”到一个“黑匣子”,输出是一世∈R. 有时我们有理由相信输出是“存在于自然界”但不可观察的“理想输出”的噪声版本是一世∗=X吨一个一世这只是输入的线性函数吨H一世s一世sC一个ll和d“l一世n和一个rr和Gr和ss一世○n米○d和l,”在一世吨H一世np在吨s$一个一世$C一个ll和d“r和Gr和ss○rs”. 我们的目标是转换实际观察结果(一个一世,是一世),1≤一世≤米, 估计未知的“真实”参数向量X. 表示一个具有行的矩阵[一个一世]吨并收集个人观察结果是一世一次观察是=[是1;…;是米]∈R米,我们得到了恢复向量的问题X从嘈杂的观察一个X. 这里又是最受欢迎的模型这是标准高斯噪声。

澳洲代考|凸优化代考CONVEX OPTIMIZATION代考|SIGNAL RECOVERY: PARAMETRIC AND NONPARAMETRIC CASES

恢复信号X从观察是如果没有观察噪音会很容易(这=0)和矩阵的秩一个等于维度n的信号。在这种情况下,只有当米≥n “米○r和○bs和r在一个吨一世○ns吨H一个n在nķn○在np一个r一个米和吨和rs”,并且在这个范围内是典型的米和n, 所需X将是线性方程组的唯一解,并且找到X将是一个简单的线性代数问题。除了这个琐碎的“足够的观察,没有噪音”的案例之外,多年来人们已经研究了以下两个版本的恢复问题:

参数案例:米≫n,这是具有零均值的非平凡噪声,例如标准高斯噪声。这是经典的统计设置,重点是如何使用大量可用的观察结果,以便在恢复过程中尽可能抑制观察噪声的影响。

澳洲代考|凸优化代考Convex optimization代考

澳洲代考|凸优化代考Convex optimization代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment