Scroll Top
19th Ave New York, NY 95822, USA

网课代考|数字信号处理代写Digital Signal Processing Assignment代写|Matrices as Linear Transformations

如果你也在 怎样代写数字信号处理Digital Signal Processing Assignment这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数字信号处理Digital Signal Processing Assignment是指使用数字处理,如通过计算机或更专业的数字信号处理器,来执行各种信号处理操作。以这种方式处理的数字信号是一连串的数字,代表时间、空间或频率等领域中连续变量的样本。在数字电子学中,数字信号被表示为脉冲序列,它通常由晶体管的开关产生。

数字信号处理Digital Signal Processing Assignment和模拟信号处理是信号处理的子领域。DSP的应用包括音频和语音处理、声纳、雷达和其他传感器阵列处理、频谱密度估计、统计信号处理、数字图像处理、数据压缩、视频编码、音频编码、图像压缩、电信的信号处理、控制系统、生物医学工程和地震学等。

my-assignmentexpert™数字信号处理Digital Signal Processing Assignment代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的数字信号处理Digital Signal Processing Assignment作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此数字信号处理Digital Signal Processing Assignment作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在网课代考方面已经树立了自己的口碑, 保证靠谱, 高质且原创的网课代考服务。我们的专家在数字信号处理Digital Signal Processing Assignment代写方面经验极为丰富,各种数字信号处理Digital Signal Processing Assignment相关的作业也就用不着 说。

我们提供的数字信号处理Digital Signal Processing Assignment及其相关学科的代写,服务范围广, 其中包括但不限于:

网课代考|数字信号处理代写Digital Signal Processing Assignment代写|Matrices as Linear Transformations

作业代写|数字信号处理代写Digital Signal Processing Assignment代写|The Scaling and Rotational Transformation

The scaling transformation stretches or compresses the length of each entry in the vector. Scaling is usually done from $R^{\mathrm{n}}$ to $R^{\mathrm{n}}$ space where the input and output vectors feature the same number of entries. In this case, we construct the transformation matrix $A$ by separately scaling the entries of the identity matrix.
$$
\begin{aligned}
\text { In } &=\left[\begin{array}{l}
x \
y
\end{array}\right] \
O u t &=A \cdot I n=\left[\begin{array}{ll}
\alpha & 0 \
0 & \beta
\end{array}\right] \cdot\left[\begin{array}{l}
x \
y
\end{array}\right]=\left[\begin{array}{l}
\alpha x \
\beta y
\end{array}\right]
\end{aligned}
$$
In the following example, we illustrate the scaling transformation by selecting a set of unit-length input vectors that form a circle around the origin. Once we transform these input vectors using the matrix $A$, the geometric properties of the transformation become especially clear. To understand the rotational transformation, recall from our discussion on complex numbers that we may rotate a point, In $=x+j y$, in the complex plane by multiplying it by $e^{i 0}=\cos (\theta)+j \cdot \sin (\theta)$, where $\theta$ is our angle of rotation.
$$
\begin{aligned}
\text { Out }=e^{j \theta} \cdot I n &=(\cos \theta+j \sin \theta) \cdot(x+j y) \
&=(\cos \theta \cdot x-\sin \theta \cdot y)+j(\sin \theta \cdot x+\cos \theta \cdot y)
\end{aligned}
$$

作业代写|数字信号处理代写Digital Signal Processing Assignment代写|Reflection as a Compound Transform

Reflection is a wonderful example of how we can express a sophisticated linear transformation as the product of simpler ones. Take a look at the graph at the top left of the figure below. Points $I n_{1}$ and $\operatorname{In}_{2}$ are reflected about a straight line that crosses the origin and features an orientation of $\theta$ from the positive $\mathrm{x}$ axis. It’s not an easy transformation to just write out until we realize that reflection can be broken down into three steps.

Step 1: In step one, we rotate both $I n_{1}$ and $I n_{2}$ by $-\theta$, or $\theta$ in the clockwise direction. The transformation matrix is straight forward and changes points $I n_{1}$ and $I n_{2}$ to $T_{1}$ and $T_{2}$.
$$
T=\left[\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \
\sin (-\theta) & \cos (-\theta)
\end{array}\right] \cdot I n
$$

网课代考|数字信号处理代写Digital Signal Processing Assignment代写|Matrices as Linear Transformations

数字信号处理代写

作业代写|数字信号处理代写DIGITAL SIGNAL PROCESSING ASSIGNMENT代写|THE SCALING AND ROTATIONAL TRANSFORMATION

缩放变换拉伸或压缩向量中每个条目的长度。缩放通常是从Rn至Rn输入和输出向量具有相同条目数的空间。在这种情况下,我们构造变换矩阵一个通过分别缩放单位矩阵的条目。
 在 =[X 是] ○在吨=一个⋅我n=[一个0 0b]⋅[X 是]=[一个X b是]
在下面的示例中,我们通过选择一组单位长度的输入向量来说明缩放变换,这些向量在原点周围形成一个圆。一旦我们使用矩阵变换这些输入向量一个,变换的几何性质变得特别清晰。为了理解旋转变换,回想一下我们对复数的讨论,我们可以旋转一个点,In=X+j是, 在复平面上乘以和一世0=因⁡(θ)+j⋅罪⁡(θ), 在哪里θ是我们的旋转角度。
 出去 =和jθ⋅我n=(因⁡θ+j罪⁡θ)⋅(X+j是) =(因⁡θ⋅X−罪⁡θ⋅是)+j(罪⁡θ⋅X+因⁡θ⋅是)

作业代写|数字信号处理代写DIGITAL SIGNAL PROCESSING ASSIGNMENT代写|REFLECTION AS A COMPOUND TRANSFORM

反射是一个很好的例子,说明我们如何将复杂的线性变换表达为简单变换的乘积。看看下图左上角的图表。积分我n1和在2被反射在一条直线上,该直线穿过原点并具有一个方向θ从积极的X轴。在我们意识到反射可以分解为三个步骤之前,仅仅写出来并不是一个简单的转换。

第 1 步:在第 1 步中,我们旋转两个我n1和我n2经过−θ, 或者θ顺时针方向。变换矩阵是直截了当的,改变点我n1和我n2至吨1和吨2.
吨=[因⁡(−θ)−罪⁡(−θ) 罪⁡(−θ)因⁡(−θ)]⋅我n

作业代写|数字信号处理代写Digital Signal Processing Assignment代写

作业代写|数字信号处理代写Digital Signal Processing Assignment代写 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment