MY-ASSIGNMENTEXPERT™可以为您提供ucsd.edu Math280A Probability Theory概率论课程的代写代考和辅导服务!
Math280A课程简介
Coursework: There will be weekly homework assignments due on Mondays (starting in Week 2); they are posted below. There will be 5 quizzes, in weeks 1, 3, 5, 7, and 9 of the quarter; they will take place during the scheduled Thursday lecture time, with an alternate sitting available in the late evening to accommodate those in distant time-zones. And there will be a take-home final exam during exam week. Timing and due dates for all courses assessments can be found below.
Prerequisites
Piazza is an online discussion forum. It will allow you to post messages (openly or anonymously) and answer posts made by your fellow students, about course content, homework, quizzes, etc. The instructor and TA will also monitor and post to Piazza regularly. You can sign up here. Note: Piazza has an opt-in “Piazza Careers” section which, if you give permission, will share statistics about your Piazza use with potential future employers. It also has a “social network” component, based on other students who’ve shared a Piazza-based class with you, that comes with the usual warnings about privacy concerns. Piazza is fully FERPA compliant, and is an allowed resource at UCSD. Nevertheless, you are not required to use Piazza if you do not wish.
Math280A Probability Theory HELP(EXAM HELP, ONLINE TUTOR)
(Exercise 4.4 in Driver) Let $A, B, C \subseteq \Omega$. Recall that the symmetric difference of sets is $A \triangle B=\left(A \cap B^c\right) \cup\left(B \cap A^c\right)$.
(a) Show that $A \cap C^c \subseteq\left(A \cap B^c\right) \cup\left(B \cap C^c\right)$.
(b) Use part (a) to show that
$$
A \triangle C \subseteq(A \triangle B) \cup(B \triangle C)
$$
(c) Now, let $v: 2^{\Omega} \rightarrow[0, \infty)$ be an outer measure. Show that the function $d: 2^{\Omega} \times 2^{\Omega} \rightarrow$ $[0, \infty)$ defined by $d(A, B)=v(A \triangle B)$ satisfies the triangle inequality:
$$
d(A, C) \leq d(A, B)+d(B, C)
$$
(a) Suppose $x \in A \cap C^c$. Then $x \in A$ and $x \notin C$. There are two cases:
- If $x \notin B$, then $x \in A \cap B^c$, and therefore $x \in (A \cap B^c) \cup (B \cap C^c)$.
- If $x \in B$, then $x \in B \cap C^c$, and therefore $x \in (A \cap B^c) \cup (B \cap C^c)$. Therefore, in either case, $x \in (A \cap B^c) \cup (B \cap C^c)$, which shows that $A \cap C^c \subseteq (A \cap B^c) \cup (B \cap C^c)$.
(b) Using part (a), we have \begin{align*} A \triangle C &= (A \cap C^c) \cup (C \cap A^c) \ &\subseteq (A \cap B^c) \cup (B \cap C^c) \cup (C \cap B^c) \cup (B \cap A^c) \ &= (A \triangle B) \cup (B \triangle C). \end{align*}
(c) We need to show that for any $\$ A, B, C \backslash$ subseteq $\backslash O m e g a \$$,
$$
d(A, C)=v(A \triangle C) \leq v(A \triangle B)+v(B \triangle C)=d(A, B)+d(B, C) .
$$
Let $\$ \backslash$ epsilon $>0 \$$. By definition of outer measure, there exist sets $\$ A_{-} 1, A_{-} 2$, $\backslash$ dots $\$$ and $\$ B_{-} 1, B _2, \backslash$ dots $\$$ such that $\$ A \backslash$ subseteq $\backslash$ bigcup_ ${i=1}^{\wedge} \backslash$ infty A_ $\$ \$$, $\$ B \backslash$ subseteq $\backslash$ bigcup_ ${i=1}^{\wedge} \backslash$ infty $B$ _ $i$, and
$$
v(A)+\epsilon>\sum_{i=1}^{\infty} v\left(A_i\right), \quad v(B)+\epsilon>\sum_{i=1}^{\infty} v\left(B_i\right) .
$$
Let $\mathcal{A}$ be a field over $\Omega$, and let $\mathbb{P}$ be a probability measure on $(\Omega, \sigma(\mathcal{A}))$. Let $B \in \sigma(\mathcal{A})$. Prove that for any $\epsilon>0$, there is a set $A \in \mathcal{A}$ such that $\mathbb{P}(A \triangle B)<\epsilon$. I.e. $\mathcal{A}$ is “dense” in $\sigma(\mathcal{A})$. [Hint: show that the collection of all sets $B$ satisfying this property is a $\sigma$-field.]
Let $\mathcal{B}$ be the collection of all sets $B \in \sigma(\mathcal{A})$ such that for any $\epsilon > 0$, there is a set $A \in \mathcal{A}$ satisfying $\mathbb{P}(A \triangle B) < \epsilon$. We want to show that $\mathcal{B}$ is a $\sigma$-field.
First, note that $\Omega \in \mathcal{A}$, so $\Omega \in \mathcal{B}$. Also, if $B \in \mathcal{B}$, then for any $\epsilon > 0$, there exists $A \in \mathcal{A}$ such that $\mathbb{P}(A \triangle B) < \epsilon$. But then $\mathbb{P}((A \triangle B)^c) = \mathbb{P}(A \cap B^c) + \mathbb{P}(A^c \cap B) \leq 2\epsilon$, since $A$ and $B$ differ only on a set of measure less than $\epsilon$. Thus, $(A \triangle B)^c \in \mathcal{B}$.
Finally, let $(B_n)$ be a sequence of sets in $\mathcal{B}$. For any $\epsilon > 0$, there exist sets $A_n \in \mathcal{A}$ such that $\mathbb{P}(A_n \triangle B_n) < \frac{\epsilon}{2^n}$ for all $n$. Then, \begin{align*} \mathbb{P}\left(\bigtriangleup_{n=1}^\infty B_n\right) &= \mathbb{P}\left(\bigcap_{n=1}^\infty (B_n \setminus \bigcup_{k=1}^{n-1} B_k)\right) \ &= \lim_{n \to \infty} \mathbb{P}(B_n \setminus \bigcup_{k=1}^{n-1} B_k) \ &\leq \lim_{n \to \infty} \mathbb{P}(B_n \triangle A_n) + \mathbb{P}(A_n \triangle \bigcup_{k=1}^{n-1} B_k) \ &\leq \lim_{n \to \infty} \left(\frac{\epsilon}{2^n} + \sum_{k=1}^{n-1} \frac{\epsilon}{2^k}\right) \ &= \epsilon. \end{align*} Therefore, $\bigtriangleup_{n=1}^\infty B_n \in \mathcal{B}$. This shows that $\mathcal{B}$ is a $\sigma$-field.
Since $\mathcal{A}$ is a field and $\sigma(\mathcal{A})$ is the smallest $\sigma$-field containing $\mathcal{A}$, we have $\mathcal{A} \subseteq \mathcal{B} \subseteq \sigma(\mathcal{A})$. But since $\mathcal{B}$ is a $\sigma$-field, it contains $\mathcal{A}$ if and only if it is equal to $\sigma(\mathcal{A})$. Thus, $\mathcal{A}$ is dense in $\sigma(\mathcal{A})$, as desired.
MY-ASSIGNMENTEXPERT™可以为您提供UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN MATH2940 linear algebra线性代数课程的代写代考和辅导服务! 请认准MY-ASSIGNMENTEXPERT™. MY-ASSIGNMENTEXPERT™为您的留学生涯保驾护航。