如果你也在 怎样代写数学建模Mathematical Modeling这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数学建模Mathematical Modeling是使用数学概念和语言对一个具体系统的抽象描述。建立数学模型的过程被称为数学建模。数学模型被用于自然科学(如物理学、生物学、地球科学、化学)和工程学科(如计算机科学、电气工程),以及非物理系统,如社会科学(如经济学、心理学、社会学、政治学)。使用数学模型来解决商业或军事行动中的问题是运筹学领域的一个重要部分。数学模型也被用于音乐、语言学、和哲学(例如,集中用于分析哲学)。
数学建模Mathematical Modeling可以有很多形式,包括动态系统、统计模型、微分方程或博弈论模型。这些和其他类型的模型可以重叠,一个特定的模型涉及各种抽象结构。一般来说,数学模型可能包括逻辑模型。在许多情况下,一个科学领域的质量取决于在理论方面开发的数学模型与可重复的实验结果的吻合程度。理论上的数学模型和实验测量结果之间缺乏一致性,往往导致更好的理论被开发出来,从而取得重要进展。
数学建模Mathematical Modeling代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的数学建模Mathematical Modeling作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此数学建模Mathematical Modeling作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!
my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
数学代写|数学建模代写Mathematical Modeling代考|CLASSIFICATION OF MATHEMATICAL MODELS
(a) Mathematical models (MM) may be classified according to the subject matter of the models. Thus we have MM in physics (mathematical physics), MM in chemistry (theoretical chemistry), MM in biology (mathematical biology), MM in medicine (mathematical medicine), MM in economics (mathematical economics and econometrics), MM in psychology (mathematical psychology), MM in sociology (mathematical sociology), MM in engineering (mathematical engineering), and so on.
We similarly have MM of transportation, of urban and regional planning, of pollution, of environment, of oceanography, of blood flows, of genetics, of water resources, of optimal utilization of exhaustible and renewable resources, of political systems, of land distribution, of linguistics, and so on.
In fact every branch of knowledge has two aspects, one of which is theoretical, mathematical, statistical, and computer-based, and the other of which is empirical, experimental, and observational. Mathematical modeling is essential to the first of these two aspects. We have separate books on mathematical models in each of the areas we have mentioned previously and in many others. One can spend a lifetime specializing in mathematical models in one specified area alone.
(b) We may also classify mathematical models according to the mathematical techniques used in solving them. Thus we have mathematical modeling (MM) through classical algebra, MM through linear algebra and matrices, MM through ordinary and partial differential equations, MM through ordinary and partial difference equations, MM through integral equations, MM through intero-differential equations, MM through differential-difference equations, MM through functional equations, MM through graphs, MM through mathematical programming, MM through calculus of variations, MM through maximum principle, and so on.
Again, there are books on each of these techniques. However, in most of these books, most of the space is devoted to explaining the theory of the technique concerned and applications are given as illustrations only. The mathematical modeling aspect is seldom emphasized.
In books of category $(a)$, mathematical modeling is emphasized and techniques are considered of secondary importance (though this is not always the case) but the models belong to one specified field of knowledge. In books of category $(b)$, the theory of the technique is emphasized and ready-made models are used to illustrate the technique. In the present book, we assume the knowledge of the basic theory of each technique and lay emphasis mainly on mathematical modeling and applications of the technique. In particular we consider when models in terms of specific techniques may be relevant. Books of category $(a)$ consider applications of mathematics in one specified field of knowledge, but use a diversity of mathematical techniques. Books of category $(b)$ use a single technique, but consider application in a diversity of fields of knowledge. In the present book, we consider both a diversity of techniques and a diversity of fields of knowledge.
(c) Mathematical models may also be classified according to the purpose we have for the model. Thus we have mathematical models (MM) for description, MM for insight, MM for prediction, MM for organization, MM for control, and MM for action.
(d) Mathematical models may also be classified according to their nature. Thus
(i) Mathematical models may be linear or non-linear according to whether the basic equations describing them are linear or nonlinear.
(ii) Mathematical models may be static or dynamic according to whether or not the time variations in the system are taken into account.
(iii) Mathematical models may be deterministic or stochastic according to whether or not chance factors are taken into account.
(iv) Mathematical models may be discrete or continuous according to whether the variables involved are discrete or continuous.
数学代写|数学建模代写Mathematical Modeling代考|SOME CHARACTERISTICS OF MATHEMATICAL MODELS
(i) Realism of models: We want a mathematical model to be as realistic as possible and to represent reality as closely as possible. However, if a model is very realistic, it may not be mathematically tractable. In making a mathematical model, there has to be a trade-off between tractability and reality.
(ii) Hierarchy of models: Mathematical modeling is not a one-shot affair. Models are constantly improved to make them more realistic. Thus for every situation, we get a hierarchy of models, each more realistic than the preceding and each likely to be followed by a better one.
(iii) Relative precision of models: Different models differ in their precision and their agreement with observations.
(iv) Robustness of models: A mathematical model is said to be robust if small changes in the parameters lead to small changes in the behavior of the model. The decision is made by using sensitivity analysis for the models.
(v) Self-consistency of models: A mathematical model involves equations and inequations and these must be consistent, e.g., a model cannot have both $x+y>a$ and $x+y<a$. Sometimes the inconsistency results from inconsistency of basic assumptions. Since mathematical inconsistency is relatively easier to find out, this gives a method of finding inconsistency in requirements which social or biological scientists may require of their models. A well-known example of this is provided by Arrow’s impossibility theorem.
(vi) Oversimplified and overambitious models: It has been said that mathematics that is certain does not refer to reality and mathematics that refers to reality is not certain. A model may not represent reality because it is oversimplified. A model may also be overambitious in the sense that it may involve too many complications and may give results accurate to ten decimal places whereas the observations may be correct to two decimal places only.
(vii) Complexity of models: This can be increased by subdividing variables, by taking more variables and by considering more details. Increase of complexity need not always lead to increase of insight as after a stage, diminishing returns begin to set in. The art of mathematical modeling consists in stopping before this stage.
(viii) Models can lead to new experiments, new concepts, and new mathematics: Comparison of predictions with observations reveals the need for new experiments to collect needed data. Mathematical models can also lead to development of new concepts. If known mathematical techniques are not adequate to deduce results from the mathematical model, new mathematical techniques have to be developed.
数学建模代写
数学代写|数学建模代写Mathematical Modeling代考|CLASSIFICATION OF MATHEMATICAL MODELS
(a)数学模型可根据模型的主题进行分类。因此,我们有物理学的MM(数学物理)、化学的MM(理论化学)、生物学的MM(数学生物学)、医学的MM(数学医学)、经济学的MM(数学经济学和计量经济学)、心理学的MM(数学心理学)、社会学的MM(数学社会学)、工程学的MM(数学工程)等等。
同样,我们也有交通、城市和区域规划、污染、环境、海洋学、血液流动、遗传学、水资源、可再生和可再生资源的最佳利用、政治制度、土地分配、语言学等方面的MM。
事实上,每一个知识分支都有两个方面,一个是理论的、数学的、统计的和以计算机为基础的,另一个是经验的、实验的和观察的。数学建模对于这两个方面中的第一个至关重要。我们在前面提到的每个领域和其他许多领域都有关于数学模型的单独书籍。一个人可以用一生的时间专门研究一个特定领域的数学模型。
(b)我们也可以根据求解数学模型所使用的数学技术对数学模型进行分类。因此,我们有数学建模(MM)通过经典代数,MM通过线性代数和矩阵,MM通过常微分方程和偏微分方程,MM通过常微分方程和偏差分方程,MM通过积分方程,MM通过微分方程,MM通过微分方程,MM通过泛函方程,MM通过图,MM通过数学规划,MM通过变分法,MM通过极大值原理,等等。
同样,这些技巧都有相关的书籍。然而,在大多数这些书中,大部分的空间都是用来解释有关技术的理论和应用仅作为插图。数学建模方面很少被强调。
在类别$(a)$的书中,数学建模被强调,技术被认为是次要的(尽管情况并非总是如此),但模型属于一个特定的知识领域。在类别$(b)$的书中,强调了该技术的理论,并使用现成的模型来说明该技术。在本书中,我们假设每个技术的基本理论知识,并重点放在数学建模和技术的应用。特别地,我们考虑在特定技术方面的模型可能是相关的。类别$(a)$的书籍考虑数学在某一特定知识领域的应用,但使用多种数学技术。类别$(b)$的书使用单一的技术,但考虑在知识的多样性领域的应用。在本书中,我们考虑了技术的多样性和知识领域的多样性。
(c)数学模型也可以根据我们对模型的目的进行分类。因此,我们有用于描述的数学模型(MM)、用于洞察的数学模型、用于预测的数学模型、用于组织的数学模型、用于控制的数学模型和用于行动的数学模型。
(d)数学模型也可按其性质分类。因此
(i)根据描述数学模型的基本方程是线性的还是非线性的,数学模型可以是线性的或非线性的。
(ii)根据是否考虑到系统中的时间变化,数学模型可以是静态的,也可以是动态的。
(iii)数学模型可以是确定性的,也可以是随机的,这取决于是否考虑了偶然因素。
(iv)根据所涉及的变量是离散的还是连续的,数学模型可以是离散的或连续的。
数学代写|数学建模代写Mathematical Modeling代考|SOME CHARACTERISTICS OF MATHEMATICAL MODELS
(i)模型的现实性:我们希望一个数学模型尽可能真实,并尽可能接近地表示现实。然而,如果一个模型非常现实,它可能在数学上不容易处理。在建立数学模型时,必须在可操作性和现实性之间做出权衡。
(ii)模型的层次结构:数学建模不是一次性的。模型不断改进,使其更加逼真。因此,对于每一种情况,我们都得到了一个模型的层次结构,每个模型都比前面的模型更现实,并且每个模型之后都可能有一个更好的模型。
(iii)模式的相对精度:不同模式的精度和与观测值的一致性不同。
(iv)模型的鲁棒性:如果参数的微小变化导致模型行为的微小变化,则称数学模型是鲁棒的。通过对模型的敏感性分析进行决策。
(v)模型的自洽性:数学模型涉及方程和不等式,它们必须是一致的,例如,一个模型不能同时具有$x+y> A $和$x+y< A $。有时,不一致源于基本假设的不一致。由于数学上的不一致性相对容易发现,这就提供了一种方法来发现社会或生物科学家可能要求他们的模型的要求中的不一致性。一个著名的例子就是阿罗的不可能性定理。
(vi)过于简化和过于雄心勃勃的模型:有人说,确定的数学不涉及现实,而涉及现实的数学不确定。一个模型可能不代表现实,因为它过于简化了。模型也可能过于雄心勃勃,因为它可能涉及太多的复杂性,可能给出精确到小数点后十位的结果,而观测结果可能只精确到小数点后两位。
模型的复杂性:可以通过细分变量、采用更多的变量和考虑更多的细节来增加复杂性。复杂性的增加不一定总是导致洞察力的增加,因为在一个阶段之后,收益递减开始出现。数学建模的艺术在于在这个阶段之前停下来。
模式可以导致新的实验、新的概念和新的数学:将预测与观察结果进行比较,可以发现需要进行新的实验来收集所需的数据。数学模型也可以导致新概念的发展。如果已知的数学技术不足以从数学模型推导出结果,则必须开发新的数学技术。
数学代写|数学建模代写Mathematical Modeling代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。