Scroll Top
19th Ave New York, NY 95822, USA

统计代写|时间序列分析代写Time Series Analysis代考|Models utilizing time series structure

如果你也在 怎样代写时间序列Time Series 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。时间序列Time Series是在数学中,是按时间顺序索引(或列出或绘制)的一系列数据点。最常见的是,一个时间序列是在连续的等距的时间点上的一个序列。因此,它是一个离散时间数据的序列。时间序列的例子有海洋潮汐的高度、太阳黑子的数量和道琼斯工业平均指数的每日收盘值。

时间序列Time Series分析包括分析时间序列数据的方法,以提取有意义的统计数据和数据的其他特征。时间序列预测是使用一个模型来预测基于先前观察到的值的未来值。虽然经常采用回归分析的方式来测试一个或多个不同时间序列之间的关系,但这种类型的分析通常不被称为 “时间序列分析”,它特别指的是单一序列中不同时间点之间的关系。中断的时间序列分析是用来检测一个时间序列从之前到之后的演变变化,这种变化可能会影响基础变量。

时间序列Time Series代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的时间序列Time Series作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此时间序列Time Series作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在统计Statistics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在时间序列Time Series代写方面经验极为丰富,各种时间序列Time Series相关的作业也就用不着说。

统计代写|时间序列分析代写Time Series Analysis代考|Models utilizing time series structure

统计代写|时间序列分析代写Time Series Analysis代考|Fixed effects model

One problem with the model in Eq. (6.23) is that some of the factors may be correlated and become redundant. This leads to the introduction of the following Orthogonal GARCH (shortened to O-GARCH) model, introduced by Alexander and Chibumba (1997),
$$
\boldsymbol{\varepsilon}t=\boldsymbol{\Omega} \mathbf{r}_t $$ where $\boldsymbol{\Omega}$ is an $m \times m$ orthogonal matrix often known as the linkage matrix, transformation matrix, or factor loading matrix, $\mathbf{r}_t=\left(r{1, t}, \ldots, r_{m, t}\right)^{\prime}$, and the $r_{i, t}$ ‘s are independent factors and each follows a univariate $\operatorname{GARCH}(p, q)$ such as a $\operatorname{GARCH}(1,1)$ model. That is,
$$
\mathbf{r}t=\boldsymbol{\Gamma}_t^{1 / 2} \mathbf{e}_t $$ where the $\mathbf{e}_t$ are i.i.d. $m$-dimensional multivariate random vectors with mean vector $\mathbf{0}$ and covariance matrix $\mathbf{I}$, $$ \boldsymbol{\Gamma}_t=\operatorname{Var}{t-1}\left(\mathbf{r}t\right)=\operatorname{diag}\left(\sigma{r_{1, t}}^2, \ldots, \sigma_{r_{n, r}}^2\right),
$$
and
$$
\sigma_{r, t}^2=\left(1-\alpha_i-\beta_i\right)+\alpha_i \sigma_{r, t-1}^2+\beta_i r_{i, t-1}^2, i=1, \ldots, m
$$
To ensure the value in Eq. (6.28) to be positive, we assume that $\alpha_i$ and $\beta_i$ are positive, and $\alpha_i+\beta_i$ $<1$. Thus, the conditional variance of $\varepsilon_t$ and hence that of $\mathbf{Z}t$ becomes $$ \boldsymbol{\Sigma}_t=\operatorname{Var}{t-1}\left(\boldsymbol{\varepsilon}t\right)=\operatorname{Var}\left(\boldsymbol{\varepsilon}_t \mid \boldsymbol{\Psi}{t-1}\right)=\boldsymbol{\Omega} \boldsymbol{\Gamma}_t \boldsymbol{\Omega}^{\prime} .
$$
The linkage matrix and the independent components in Eq. (6.25) are obtained by performing a principal component analysis (PCA) on the series through the sample covariance matrix. Alexander (2001) further illustrated the use of the O-GARCH model in her book and emphasized that the strength of the model is to choose a small number of principal components from PCA compared to the number of variables (assets).

统计代写|时间序列分析代写Time Series Analysis代考|Some common variance–covariance structures

Since a large number of parameters in a variance-covariance matrix will unfavorably affect the estimation efficiency, we should use the correlation pattern of the time series to simplify its form. The following are some commonly used variance-covariance matrices used in repeated measurement studies. Except for the first unstructured matrix, we introduce some simple and useful structures that contain only a small number of parameters.
The unstructured matrix:
$$
\mathbf{\Sigma}=\left[\begin{array}{ccccc}
\sigma_1^2 & \sigma_{1,2} & \cdots & \cdots & \sigma_{1, p} \
& \sigma_2^2 & \sigma_{2,3} & \cdots & \sigma_{2, p} \
& & \ddots & \vdots & \vdots \
& & & \sigma_{p-1}^2 & \sigma_{(p-1), p} \
& & & & \sigma_p^2
\end{array}\right]
$$
The form implies that variances and covariances at different times are not necessarily equal. There are $p(p+1) / 2$ parameters in the matrix.
The identical and independent structure:
$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma^2 & 0 & 0 & \cdots & 0 \
& \sigma^2 & 0 & \cdots & 0 \
& & \ddots & \vdots & \vdots \
& & & \sigma^2 & 0 \
& & & & \sigma^2
\end{array}\right]=\sigma^2 \mathbf{I} .
$$
The form in Eq. (7.20) is the simplest one and contains only one parameter. It may be applicable in some applications especially when the repeated measurements are taken far apart such that the correlation between different times is effectively zero relative to the other variation.
The independent but non-identical structure:
$$
\mathbf{\Sigma}=\left[\begin{array}{ccccc}
\sigma_1^2 & 0 & 0 & \cdots & 0 \
& \sigma_2^2 & 0 & \cdots & 0 \
& & \ddots & \vdots & \vdots \
& & & \sigma_{p-1}^2 & 0 \
& & & 0 & \sigma_p^2
\end{array}\right] .
$$
This is a generalized form of Eq. (7.20), where the variances at different times are not necessarily equal. It contains $p$ parameters.
The structure of common symmetry:
$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma^2 & \sigma^2 \rho & \cdots & \cdots & \sigma^2 \rho \
& \sigma^2 & \sigma^2 \rho & \cdots & \sigma^2 \rho \
& \ddots & \vdots & \vdots \
& & \sigma^2 & \sigma^2 \rho \
& & & \sigma^2
\end{array}\right] .
$$
The form in Eq. (7.22) assumes that $E\left(e_{i, j, k} e_{i, j, \ell}\right)=\sigma^2$ if $k=\ell$, and $E\left(e_{i, j, k} e_{i, j, \ell}\right)=\sigma^2 \rho$ if $k \neq \ell$. There are only two parameters. However, it implies that (i) variances are equal at all times, and (ii) covariances and hence correlations are equal at all pairs of times. This strong assumption may not hold in many situations.
The structure of heterogeneous common symmetry:
$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma_1^2 & \sigma_1 \sigma_2 \rho & \cdots & \cdots & \sigma_1 \sigma_p \rho \
& \sigma_2^2 & \sigma_2 \sigma_3 \rho & \cdots & \sigma_2 \sigma_p \rho \
& & \ddots & \vdots & \vdots \
& & & \ddots & \sigma_{(p-1)} \sigma_p \rho \
& & & & \sigma_p^2
\end{array}\right] .
$$

统计代写|时间序列分析代写Time Series Analysis代考|Models utilizing time series structure

时间序列代写

统计代写|时间序列分析代写Time Series Analysis代考|Fixed effects model

式(6.23)中模型的一个问题是,一些因素可能是相关的,并且变得多余。这就引出了Alexander和Chibumba(1997)提出的正交GARCH(简称O-GARCH)模型:
$$
\boldsymbol{\varepsilon}t=\boldsymbol{\Omega} \mathbf{r}t $$其中$\boldsymbol{\Omega}$是一个$m \times m$正交矩阵,通常称为链接矩阵、变换矩阵或因子加载矩阵,$\mathbf{r}_t=\left(r{1, t}, \ldots, r{m, t}\right)^{\prime}$和$r_{i, t}$是独立的因素,每个因素都遵循一个单变量$\operatorname{GARCH}(p, q)$,如$\operatorname{GARCH}(1,1)$模型。也就是说,
$$
\mathbf{r}t=\boldsymbol{\Gamma}t^{1 / 2} \mathbf{e}_t $$其中$\mathbf{e}_t$为i.i.d $m$多维随机向量,具有均值向量$\mathbf{0}$和协方差矩阵$\mathbf{I}$, $$ \boldsymbol{\Gamma}_t=\operatorname{Var}{t-1}\left(\mathbf{r}t\right)=\operatorname{diag}\left(\sigma{r{1, t}}^2, \ldots, \sigma_{r_{n, r}}^2\right),
$$

$$
\sigma_{r, t}^2=\left(1-\alpha_i-\beta_i\right)+\alpha_i \sigma_{r, t-1}^2+\beta_i r_{i, t-1}^2, i=1, \ldots, m
$$
为保证式(6.28)中的值为正,我们假设$\alpha_i$和$\beta_i$为正,$\alpha_i+\beta_i$$<1$为正。因此,$\varepsilon_t$的条件方差和$\mathbf{Z}t$的条件方差变为$$ \boldsymbol{\Sigma}_t=\operatorname{Var}{t-1}\left(\boldsymbol{\varepsilon}t\right)=\operatorname{Var}\left(\boldsymbol{\varepsilon}_t \mid \boldsymbol{\Psi}{t-1}\right)=\boldsymbol{\Omega} \boldsymbol{\Gamma}_t \boldsymbol{\Omega}^{\prime} .
$$
通过样本协方差矩阵对序列进行主成分分析(PCA),得到式(6.25)中的联动矩阵和独立分量。Alexander(2001)在她的书中进一步说明了O-GARCH模型的使用,并强调该模型的优势在于相对于变量(资产)的数量,从PCA中选择少量的主成分。

统计代写|时间序列分析代写Time Series Analysis代考|Some common variance–covariance structures

由于方差-协方差矩阵中参数过多会对估计效率产生不利影响,我们应该利用时间序列的相关模式来简化其形式。以下是重复测量研究中常用的方差-协方差矩阵。除了第一个非结构化矩阵外,我们还介绍了一些简单而有用的结构,它们只包含少量的参数。
非结构化矩阵:
$$
\mathbf{\Sigma}=\left[\begin{array}{ccccc}
\sigma_1^2 & \sigma_{1,2} & \cdots & \cdots & \sigma_{1, p} \
& \sigma_2^2 & \sigma_{2,3} & \cdots & \sigma_{2, p} \
& & \ddots & \vdots & \vdots \
& & & \sigma_{p-1}^2 & \sigma_{(p-1), p} \
& & & & \sigma_p^2
\end{array}\right]
$$
这种形式意味着不同时间的方差和协方差不一定相等。矩阵中有$p(p+1) / 2$参数。
相同的和独立的结构:
$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma^2 & 0 & 0 & \cdots & 0 \
& \sigma^2 & 0 & \cdots & 0 \
& & \ddots & \vdots & \vdots \
& & & \sigma^2 & 0 \
& & & & \sigma^2
\end{array}\right]=\sigma^2 \mathbf{I} .
$$
式(7.20)中的形式是最简单的形式,它只包含一个参数。它可能适用于某些应用,特别是当重复测量相隔很远时,使得不同时间之间的相关性相对于其他变化有效为零。
结构:独立但不相同的结构:
$$
\mathbf{\Sigma}=\left[\begin{array}{ccccc}
\sigma_1^2 & 0 & 0 & \cdots & 0 \
& \sigma_2^2 & 0 & \cdots & 0 \
& & \ddots & \vdots & \vdots \
& & & \sigma_{p-1}^2 & 0 \
& & & 0 & \sigma_p^2
\end{array}\right] .
$$
这是式(7.20)的广义形式,其中不同时间的方差不一定相等。包含$p$参数。
对称:一般对称的结构:
$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma^2 & \sigma^2 \rho & \cdots & \cdots & \sigma^2 \rho \
& \sigma^2 & \sigma^2 \rho & \cdots & \sigma^2 \rho \
& \ddots & \vdots & \vdots \
& & \sigma^2 & \sigma^2 \rho \
& & & \sigma^2
\end{array}\right] .
$$
式(7.22)中的形式假定$E\left(e_{i, j, k} e_{i, j, \ell}\right)=\sigma^2$ = $k=\ell$, $E\left(e_{i, j, k} e_{i, j, \ell}\right)=\sigma^2 \rho$ = $k \neq \ell$。只有两个参数。然而,它意味着(i)方差在所有时间都是相等的,(ii)协方差和相关性在所有时间对都是相等的。这种强烈的假设在很多情况下可能并不成立。
异质共对称的结构:
$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma_1^2 & \sigma_1 \sigma_2 \rho & \cdots & \cdots & \sigma_1 \sigma_p \rho \
& \sigma_2^2 & \sigma_2 \sigma_3 \rho & \cdots & \sigma_2 \sigma_p \rho \
& & \ddots & \vdots & \vdots \
& & & \ddots & \sigma_{(p-1)} \sigma_p \rho \
& & & & \sigma_p^2
\end{array}\right] .
$$

统计代写|时间序列代写Time Series代考

统计代写|时间序列代写Time Series代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment