Scroll Top
19th Ave New York, NY 95822, USA

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The F-test in a linear regression model

如果你也在 怎样代写多元统计分析Multivariate Statistical Analysis STAT6560这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。多元统计分析Multivariate Statistical Analysis是统计学的一个分支,包括同时观察和分析一个以上的结果变量。多变量统计涉及到理解每一种不同形式的多变量分析的不同目的和背景,以及它们之间的关系。多变量统计在某一特定问题上的实际应用可能涉及几种类型的单变量和多变量分析,以了解变量之间的关系以及它们与所研究问题的相关性。

多元统计分析Multivariate Statistical Analysis是基于多变量统计的原理。通常情况下,MVA用于解决对每个实验单元进行多次测量的情况,这些测量之间的关系及其结构很重要。现代的、重叠的MVA分类包括:正态和一般多变量模型和分布理论、关系的研究和测量、多维区域的概率计算、对数据结构和模式的探索、由于希望包括基于物理学的分析,以计算变量对分层 “系统中的系统 “的影响,多变量分析可能变得复杂。通常情况下,希望使用多变量分析的研究会因为问题的维度而停滞。这些问题通常通过使用代理模型来缓解,代理模型是基于物理学的代码的高度精确的近似。由于代用模型采取方程的形式,它们可以被快速评估。这成为大规模MVA研究的一个有利因素:在基于物理学的代码中,整个设计空间的蒙特卡洛模拟是困难的,而在评估代用模型时,它变得微不足道,代用模型通常采取响应面方程式的形式。

多元统计分析Multivariate Statistical Analysis,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的回归分析Regression Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此多元统计分析Multivariate Statistical Analysis作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在统计Statistics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富,各种多元统计分析Multivariate Statistical Analysis相关的作业也就用不着 说。

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Kernel Densities

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The F-test in a linear regression model

The $t$-test of a linear regression model can be put into this framework. For a linear regression model (3.27), the reduced model is the one with $\beta=0$ :
$$
y_i=\alpha+0 \cdot x_i+\varepsilon_i
$$
The reduced model has $n-1$ degrees of freedom and one parameter, the intercept $\alpha$. The full model is given by $\beta \neq 0$,
$$
y_i=\alpha+\beta \cdot x_i+\varepsilon_i
$$
and has $n-2$ degrees of freedom, since there are two parameters $(\alpha, \beta)$.
The $S S$ (reduced) equals
$$
S S(\text { reduced })=\sum_{i=1}^n\left(y_i-\bar{y}\right)^2=\text { total variation. }
$$
The $S S$ (full) equals
$$
S S(\text { full })=\sum_{i=1}^n\left(y_i-\hat{y}_i\right)^2=\mathrm{RSS}=\text { unexplained variation. }
$$
The $F$-test is therefore, from (3.45),
$$
\begin{aligned}
F & =\frac{(\text { total variation }- \text { unexplained variation) } / 1}{(\text { unexplained variation) }) /(n-2)} \
& =\frac{\text { explained variation }}{(\text { unexplained variation) }) /(n-2)} .
\end{aligned}
$$

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Multiple Linear Model

The simple linear model and the analysis of variance model can be viewed as a particular case of a more general linear model where the variations of one variable $y$ are explained by $p$ explanatory variables $x$ respectively. Let $y(n \times 1)$ and $\mathcal{X}(n \times p)$ be a vector of observations on the response variable and a data matrix on the $p$ explanatory variables. An important application of the developed theory is the least squares fitting. The idea is to approximate $y$ by a linear combination $\widehat{y}$ of columns of $\mathcal{X}$, i.e., $\widehat{y} \in C(\mathcal{X})$. The problem is to find $\widehat{\beta} \in \mathbb{R}^p$ such that $\widehat{y}=\mathcal{X} \widehat{\beta}$ is the best fit of $y$ in the least-squares sense. The linear model can be written as
$$
y=\mathcal{X} \beta+\varepsilon
$$
where $\varepsilon$ are the errors. The least squares solution is given by $\widehat{\beta}$ :
$$
\widehat{\beta}=\arg \min \beta(y-\mathcal{X} \beta)^{\top}(y-\mathcal{X} \beta)=\arg \min \beta \varepsilon^{\top} \varepsilon .
$$
Suppose that $\left(\mathcal{X}^{\top} \mathcal{X}\right)$ is of full rank and thus invertible. Minimizing the expression (3.51) with respect to $\beta$ yields:
$$
\widehat{\beta}=\left(\mathcal{X}^{\top} \mathcal{X}\right)^{-1} \mathcal{X}^{\top} y
$$
The fitted value $\widehat{y}=\mathcal{X} \widehat{\beta}=\mathcal{X}\left(\mathcal{X}^{\top} \mathcal{X}\right)^{-1} \mathcal{X}^{\top} y=\mathcal{P} y$ is the projection of $y$ onto $C(\mathcal{X})$ as computed in (2.47).
The least squares residuals are
$$
e=y-\widehat{y}=y-\mathcal{X} \widehat{\beta}=\mathcal{Q} y=\left(\mathcal{I}_n-\mathcal{P}\right) y .
$$
The vector $e$ is the projection of $y$ onto the orthogonal complement of $C(\mathcal{X})$.

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The F-test in a linear regression model

多元统计分析代写

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The F-test in a linear regression model

线性回归模型的$t$ -检验可以放到这个框架中。对于线性回归模型(3.27),约简模型为$\beta=0$:
$$
y_i=\alpha+0 \cdot x_i+\varepsilon_i
$$
,约简模型的自由度为$n-1$,参数为截距$\alpha$。完整模型由$\beta \neq 0$,
$$
y_i=\alpha+\beta \cdot x_i+\varepsilon_i
$$
给出,并且具有$n-2$的自由度,因为有两个参数$(\alpha, \beta)$
$S S$ (reduced)等于
$$
S S(\text { reduced })=\sum_{i=1}^n\left(y_i-\bar{y}\right)^2=\text { total variation. }
$$
$S S$ (full)等于
$$
S S(\text { full })=\sum_{i=1}^n\left(y_i-\hat{y}_i\right)^2=\mathrm{RSS}=\text { unexplained variation. }
$$
因此,从(3.45),
$F$ -test为
$$
\begin{aligned}
F & =\frac{(\text { total variation }- \text { unexplained variation) } / 1}{(\text { unexplained variation) }) /(n-2)} \
& =\frac{\text { explained variation }}{(\text { unexplained variation) }) /(n-2)} .
\end{aligned}
$$

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Multiple Linear Model

简单线性模型和方差分析模型可以看作是更一般的线性模型的特殊情况,其中一个变量$y$的变化分别由$p$解释变量$x$来解释。设$y(n \times 1)$和$\mathcal{X}(n \times p)$为响应变量上的观测向量和$p$解释变量上的数据矩阵。该理论的一个重要应用是最小二乘拟合。其思想是用$\mathcal{X}$的列的线性组合$\widehat{y}$来近似$y$,即$\widehat{y} \in C(\mathcal{X})$。问题是找到$\widehat{\beta} \in \mathbb{R}^p$,使得$\widehat{y}=\mathcal{X} \widehat{\beta}$在最小二乘意义上是$y$的最佳拟合。线性模型可以写成
$$
y=\mathcal{X} \beta+\varepsilon
$$
其中$\varepsilon$为误差。最小二乘解由$\widehat{\beta}$给出:
$$
\widehat{\beta}=\arg \min \beta(y-\mathcal{X} \beta)^{\top}(y-\mathcal{X} \beta)=\arg \min \beta \varepsilon^{\top} \varepsilon .
$$
设$\left(\mathcal{X}^{\top} \mathcal{X}\right)$是满秩的,因此可逆。最小化表达式(3.51)相对于$\beta$的产量:
$$
\widehat{\beta}=\left(\mathcal{X}^{\top} \mathcal{X}\right)^{-1} \mathcal{X}^{\top} y
$$
拟合值$\widehat{y}=\mathcal{X} \widehat{\beta}=\mathcal{X}\left(\mathcal{X}^{\top} \mathcal{X}\right)^{-1} \mathcal{X}^{\top} y=\mathcal{P} y$是在(2.47)中计算的$y$到$C(\mathcal{X})$的投影。
最小二乘残差为
$$
e=y-\widehat{y}=y-\mathcal{X} \widehat{\beta}=\mathcal{Q} y=\left(\mathcal{I}_n-\mathcal{P}\right) y .
$$
向量$e$是$y$在$C(\mathcal{X})$的正交补上的投影。

统计代写|多元统计分析代写Multivariate Statistical Analysis代考

统计代写|多元统计分析代写Multivariate Statistical Analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment