如果你也在 怎样代写抽样调查Survey sampling 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。抽样调查Survey sampling是数学工程这一广泛新兴领域中的一个自然组成部分。例如,我们可以断言,数学工程之于今天的数学系,就像数学物理之于一个世纪以前的数学系一样;毫不夸张地说,数学在诸如语音和图像处理、信息理论和生物医学工程等工程学科中的基本影响。
抽样调查Survey sampling是主流统计的边缘。这里的特殊之处在于,我们有一个具有某些特征的有形物体集合,我们打算通过抓住其中一些物体并试图对那些未被触及的物体进行推断来窥探它们。这种推论传统上是基于一种概率论,这种概率论被用来探索观察到的事物与未观察到的事物之间的可能联系。这种概率不被认为是在统计学中,涵盖其他领域,以表征我们感兴趣的变量的单个值之间的相互关系。但这是由调查抽样调查人员通过任意指定的一种技术从具有预先分配概率的对象群体中选择样本而创建的。
my-assignmentexpert™抽样调查Survey sampling代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的抽样调查Survey sampling作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此抽样调查Survey sampling作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在统计代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计代考服务。我们的专家在抽样调查Survey sampling代写方面经验极为丰富,各种抽样调查Survey sampling相关的作业也就用不着 说。
我们提供的抽样调查Survey sampling STAT392及其相关学科的代写,服务范围广, 其中包括但不限于:
统计代写|抽样调查代考Survey sampling代考|JACKKNIFE
Let $\theta$ be a parameter required to be estimated from a sample $s$ of size $n$ and $t=t(n)$ be an estimator for $\theta$ based on $s$. Let $t$ be a biased estimator of $\theta$ with a bias $B(t)=B_n(\theta)=E(t(n)-\theta)$ expressible in the form
$$
B_n(\theta)=\frac{b_1(\theta)}{n}+\frac{b_2(\theta)}{n^2}+\frac{b_3(\theta)}{n^3}+\ldots
$$
where $b_j(\theta), j=1,2, \ldots$ are unknown functions of $\theta$ and $b_1(\theta) \neq 0$. Then, in the following way, we can derive another estimator for $\theta$ with a bias of order $1 / n^2$, that is, of the form
$$
\frac{b_2^{\prime}(\theta)}{n^2}+\frac{b_3^{\prime}(\theta)}{n^3}+\ldots
$$
Let the sample $s$ be split up into $g(\geq 1)$ disjoint groups, each of a size $m\left(=\frac{n}{g}\right)$. Let the groups be marked $1, \ldots, g$ and the statistic $t$ be now calculated on the basis of the values in $s$ excluding those in the $i$ th group. The new statistic may be denoted as $t_i=t_i(n-m)$ as it is based on $n-m$ units, omitting from $s$ of size $n$ the $m$ units in the $i$ th group. Let us now consider a new statistic
$$
e_i=g t(n)-(g-1) t_i(n-m)
$$
called the $i$ th pseudo-value. Then we have the expectation as
$$
\begin{aligned}
E\left(e_i\right)= & g E t(n)-(g-1) E\left(t_i(n-m)\right) \
= & {\left[\theta+\frac{b_1(\theta)}{n}+\frac{b_2(\theta)}{n^2}+\ldots\right] } \
& -(g-1)\left[\theta+\frac{b_1(\theta)}{n-m}+\frac{b_2(\theta)}{(n-m)^2}+\ldots\right] \
= & \theta+b_1(\theta)\left(\frac{g}{n}-\frac{g-1}{n-m}\right) \
& +b_2(\theta)\left{\frac{g}{n^2}-\frac{g-1}{(n-m)^2}\right}+\ldots \
= & \theta-\frac{g}{g-1} \frac{b_2(\theta)}{n^2}+\ldots
\end{aligned}
$$
统计代写|抽样调查代考Survey sampling代考|INTERPENETRATING NETWORK OF SUBSAMPLING AND REPLICATED SAMPLING
MAHALANOBIS (1946) introduced the technique of interpenetrating network of subsampling (IPNS) (1) to improve the accuracy of data collection and (2) to throw interim measures of error in estimation even before the completion of the entire fieldwork in surveys and processing-cum-tabulation. The method consists in dividing a sample into two or more parts, entrusting each part to a separate batch of field workers. Since each part is supposed to provide an estimate of the same parameter, any awkward divergences among the estimates emerging from the various parts are likely to create suspicion about the quality of field work carried out by the various teams. This realization should induce vigilance on their functions, engendering higher qualities of work. Moreover, with the completion of each part, a separate estimate is produced, and with two or more parts of data at hand using the separate comparable estimates, a measure of error is available as soon as at least two estimates are obtained. DEMING (1956) applied essentially the same technique, but mainly with the intention of getting an easy and simple estimate of the variance of an estimator of any parameter, no matter how complicated the sampling scheme. He called this the method of replicated sampling, which is equivalent to IPNS. Let us see how it works.
Let $K$ independent samples be selected from a given finite population each following the same scheme of sampling. Let each sample throw up an estimator that is unbiased for a parameter $\theta$ of interest relating to the population. Let $t_1, \ldots$, $t_i, \ldots, t_K$ be $K$ such independent estimators for $\theta$. Then, $E\left(t_i\right)=$ $\theta$ for every $i=1, \ldots, K$. Also each $t_i$ has the same variance because each is based on a design that is identical in all respects.
抽样调查代写
统计代写|抽样调查代考Survey sampling代考|JACKKNIFE
设$\theta$为需要从大小为$n$的样本$s$中估计的参数,$t=t(n)$为基于$s$的$\theta$的估计器。设$t$是$\theta$的有偏估计量,其偏差$B(t)=B_n(\theta)=E(t(n)-\theta)$可表示为
$$
B_n(\theta)=\frac{b_1(\theta)}{n}+\frac{b_2(\theta)}{n^2}+\frac{b_3(\theta)}{n^3}+\ldots
$$
其中$b_j(\theta), j=1,2, \ldots$为$\theta$和$b_1(\theta) \neq 0$的未知函数。然后,用下面的方法,我们可以得到另一个偏差为$1 / n^2$阶的$\theta$估计量,即形式
$$
\frac{b_2^{\prime}(\theta)}{n^2}+\frac{b_3^{\prime}(\theta)}{n^3}+\ldots
$$
将样本$s$分成$g(\geq 1)$个不相连的组,每个组的大小为$m\left(=\frac{n}{g}\right)$。将这些组标记为$1, \ldots, g$,然后根据$s$中不包括第$i$组中的值计算统计量$t$。新的统计数据可以表示为$t_i=t_i(n-m)$,因为它基于$n-m$单位,从大小为$n$的$s$中省略了第$i$组中的$m$单位。现在让我们考虑一个新的统计数据
$$
e_i=g t(n)-(g-1) t_i(n-m)
$$
称为$i$伪值。期望是
$$
\begin{aligned}
E\left(e_i\right)= & g E t(n)-(g-1) E\left(t_i(n-m)\right) \
= & {\left[\theta+\frac{b_1(\theta)}{n}+\frac{b_2(\theta)}{n^2}+\ldots\right] } \
& -(g-1)\left[\theta+\frac{b_1(\theta)}{n-m}+\frac{b_2(\theta)}{(n-m)^2}+\ldots\right] \
= & \theta+b_1(\theta)\left(\frac{g}{n}-\frac{g-1}{n-m}\right) \
& +b_2(\theta)\left{\frac{g}{n^2}-\frac{g-1}{(n-m)^2}\right}+\ldots \
= & \theta-\frac{g}{g-1} \frac{b_2(\theta)}{n^2}+\ldots
\end{aligned}
$$
统计代写|抽样调查代考Survey sampling代考|INTERPENETRATING NETWORK OF SUBSAMPLING AND REPLICATED SAMPLING
MAHALANOBIS(1946)引入了子采样互穿透网络(IPNS)技术(1),以提高数据收集的准确性;(2)在调查和处理和制表的整个实地工作完成之前,在估计中引入临时误差措施。该方法包括将样品分成两个或多个部分,将每个部分委托给单独一批的现场工作人员。由于每个部分都应该提供对相同参数的估计,因此从各个部分产生的估计之间的任何令人尴尬的分歧都可能使人们对各个小组所进行的实地工作的质量产生怀疑。认识到这一点应该引起对其职能的警惕,从而提高工作质量。此外,随着每一部分的完成,产生了一个单独的估计,并且有两个或更多的数据部分使用单独的可比较的估计,一旦获得至少两个估计,就可以测量误差。DEMING(1956)基本上采用了相同的技术,但主要是为了对任何参数的估计量的方差进行简单的估计,无论抽样方案有多复杂。他把这种方法称为重复抽样法,相当于IPNS。让我们看看它是如何工作的。
设$K$从给定的有限总体中选择独立样本,每个样本都遵循相同的抽样方案。让每个样本给出一个与总体相关的参数$\theta$的无偏估计量。设$t_1, \ldots$, $t_i, \ldots, t_K$为$\theta$的独立估计量$K$。然后,$E\left(t_i\right)=$$\theta$对应每个$i=1, \ldots, K$。此外,每个$t_i$都有相同的方差,因为每个都基于在所有方面都相同的设计。
统计代写|抽样调查代考Survey sampling代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。