Scroll Top
19th Ave New York, NY 95822, USA

数学代写|现代代数代考Modern Algebra代写|MA320

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

现代代数Modern Algebra代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的现代代数Modern Algebra作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此现代代数Modern Algebra作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

数学代写|现代代数代考Modern Algebra代写|MA320

数学代写|现代代数代考Modern Algebra代写|The resultant

The central goal of this whole chapter is to find modular ged algorithms for domains like $\mathbb{Z}[x], \mathbb{Q}[x]$, and $F[x, y]$. Section 6.13 reports on implementations that show how much these algorithms are superior to the “traditional” one, whose problems are quite visible in Example 6.1. The simplest such approach, the big prime modular algorithm, chooses a large prime $p$, calculates the gcd modulo $p$, and recovers the true gcd from its modular image. This is quite easy, provided that the modular gcd is indeed the image of the true gcd; this may, in fact, fail in exceptional cases.

This section provides a general tool, the resultant, to control modular images of the gcd. This introduces linear algebra into our polynomial problems. We also discuss other applications, such as curve intersection and minimal polynomials of algebraic elements. In Section 6.10, we introduce the subresultants, a generalization that gives us control over all results of the EEA. But the reader should realize clearly that for gcd calculations the resultant is purely an (indispensable) conceptual tool and does not enter the algorithms, but only their analysis.

Now let $F$ be a field and $f, g \in F[x]$. The following lemma says that the vanishing linear combination $(-g) \cdot f+f \cdot g=0$ has the smallest possible coefficient degrees if and only if $\operatorname{gcd}(f, g)=1$.

Lemma 6.13. Let $f, g \in F[x]$ be nonzero. Then $\operatorname{gcd}(f, g) \neq 1$ if and only if there exist $s, t \in F[x] \backslash{0}$ such that $s f+t g=0, \operatorname{deg} s<\operatorname{deg} g$, and $\operatorname{deg} t<\operatorname{deg} f$.

Proof. Let $h=\operatorname{gcd}(f, g)$. If $h \neq 1$, then $\operatorname{deg} h \geq 1$, and $s=-g / h, t=f / h$ suffice. Conversely, let $s, t$ be as assumed. If $f$ and $g$ were coprime, then $s f=-t g$ would imply that $f \mid t$, which is impossible since $t \neq 0$ and $\operatorname{deg} f>\operatorname{deg} t$. This contradiction shows that $h \neq 1$.

数学代写|现代代数代考Modern Algebra代写|Modular gcd algorithms

Our goal in this and the following sections is to provide a modular gcd algorithm for $\mathbb{Z}[x]$ and $F[x, y]$. We start by investigating the relation between the modular image of the gcd and the gcd of modular images. It turns out that they are usually (essentially) equal, but this fails for the “unlucky primes” that divide a certain resultant.

We let $f, g \in R[x]$ for a Euclidean domain $R, p \in R$ a prime, and denote by a bar the reduction modulo $p$. Corollary 6.20 says that $\operatorname{gcd}(f, g)$ is constant if and only if $\operatorname{res}(f, g) \neq 0$. The resultant $\operatorname{res}(f, g) \in R$ is a polynomial expression in the coefficients of $f$ and $g$, and one might be tempted to say: since $\overline{\operatorname{res}(f, g)}=$ $\operatorname{res}(\bar{f}, \bar{g}), \bar{f}$ and $\bar{g}$ are coprime in $(R /\langle p\rangle)[x]$ if and only if $p \nmid \operatorname{res}(f, g)$.

EXAMPLE 6.24. To get a taste of what can go wrong without further assumptions, we let $R=\mathbb{Z}$ and $p=2$. When $f=x+2$ and $g=x$, then $\operatorname{res}(f, g)=-2 \neq 0$ and $\operatorname{res}(\bar{f}, \bar{g})=0$, as expected. But when $f=4 x^3-x$ and $g=2 x+1$, then $\operatorname{res}(f, g)=0$ and $\operatorname{res}(\bar{f}, \bar{g})=\operatorname{res}(x, 1)=1 \neq 0$; in particular, $\overline{\operatorname{res}(f, g)} \neq \operatorname{res}(\bar{f}, \bar{g})$.

The reason for the unexpected behavior in the last example is that the two relevant Sylvester matrices are formed in rather different ways. Fortunately, this nuisance disappears when $p$ does not divide at least one of the leading coefficients.
Lemma 6.25. We let $R$ be a ring (commutative, with 1 ), $f, g \in R[x]$ nonzero, $r=\operatorname{res}(f, g) \in R, I \subseteq R$ an ideal, denote by a bar the reduction modulo $I$, and assume that $\overline{\operatorname{lc}(f)}$ is not a zero divisor.
(i) $\bar{r}=0 \Longleftrightarrow \operatorname{res}(\bar{f}, \bar{g})=0$.
(ii) If $R / I$ is a UFD, then $\bar{r}=0$ if and only if $\operatorname{gcd}(\bar{f}, \bar{g})$ is nonconstant.

数学代写|现代代数代考Modern Algebra代写|MA320

现代代数代写

数学代写|现代代数代考Modern Algebra代写|The resultant

本章的中心目标是为$\mathbb{Z}[x], \mathbb{Q}[x]$和$F[x, y]$等领域找到模块化算法。第6.13节报告了这些算法的实现,显示了这些算法比“传统”算法有多大的优越性,其问题在例6.1中非常明显。最简单的方法是大素数模块化算法,选择一个大素数$p$,计算gcd模$p$,并从其模块化图像中恢复真实的gcd。这很简单,只要模块化gcd确实是真正gcd的映像;事实上,这在特殊情况下可能会失败。

本节提供了一个通用工具,用于控制gcd的模块映像。这将线性代数引入到多项式问题中。我们还讨论了其他的应用,如曲线相交和代数元的最小多项式。在第6.10节中,我们将介绍子结果,这是一种泛化,使我们能够控制EEA的所有结果。但是读者应该清楚地认识到,对于gcd计算,结果纯粹是一个(不可或缺的)概念工具,不进入算法,而只进入算法的分析。

现在让$F$和$f, g \in F[x]$成为一个字段。下面的引理说,消失线性组合$(-g) \cdot f+f \cdot g=0$有最小可能的系数度当且仅当$\operatorname{gcd}(f, g)=1$。

引理6.13。设$f, g \in F[x]$非零。那么$\operatorname{gcd}(f, g) \neq 1$当且仅当存在$s, t \in F[x] \backslash{0}$使得$s f+t g=0, \operatorname{deg} s<\operatorname{deg} g$和$\operatorname{deg} t<\operatorname{deg} f$。

证明。让$h=\operatorname{gcd}(f, g)$。如果$h \neq 1$,那么$\operatorname{deg} h \geq 1$和$s=-g / h, t=f / h$就足够了。反之,假设$s, t$为。如果$f$和$g$是同质数,那么$s f=-t g$就意味着$f \mid t$,这是不可能的,因为$t \neq 0$和$\operatorname{deg} f>\operatorname{deg} t$。这个矛盾表明$h \neq 1$。

数学代写|现代代数代考Modern Algebra代写|Modular gcd algorithms

本节和以下几节的目标是为$\mathbb{Z}[x]$和$F[x, y]$提供模块化的gcd算法。我们首先研究gcd的模像与模像的模像之间的关系。事实证明,它们通常(本质上)是相等的,但对于除某个结果的“不幸质数”来说,这就不成立了。

我们令$f, g \in R[x]$在欧几里得域$R, p \in R$为一素数,用一个杠表示约简模$p$。推论6.20说$\operatorname{gcd}(f, g)$是常数当且仅当$\operatorname{res}(f, g) \neq 0$。由此得到的$\operatorname{res}(f, g) \in R$是$f$和$g$的系数的多项式表达式,人们可能会说:因为$\overline{\operatorname{res}(f, g)}=$$\operatorname{res}(\bar{f}, \bar{g}), \bar{f}$和$\bar{g}$在$(R /\langle p\rangle)[x]$中是互素数,当且仅当$p \nmid \operatorname{res}(f, g)$。

例6.24为了了解在没有进一步假设的情况下可能出现的错误,我们让$R=\mathbb{Z}$和$p=2$。当$f=x+2$和$g=x$,然后$\operatorname{res}(f, g)=-2 \neq 0$和$\operatorname{res}(\bar{f}, \bar{g})=0$,如预期。但当$f=4 x^3-x$和$g=2 x+1$,那么$\operatorname{res}(f, g)=0$和$\operatorname{res}(\bar{f}, \bar{g})=\operatorname{res}(x, 1)=1 \neq 0$;特别是$\overline{\operatorname{res}(f, g)} \neq \operatorname{res}(\bar{f}, \bar{g})$。

最后一个示例中出现意外行为的原因是两个相关的Sylvester矩阵以相当不同的方式形成。幸运的是,当$p$不除至少一个主要系数时,这种麻烦就消失了。
引理6.25。设$R$为环(可交换,带1),$f, g \in R[x]$非零,$r=\operatorname{res}(f, g) \in R, I \subseteq R$为理想,用杠表示约简模$I$,并假设$\overline{\operatorname{lc}(f)}$不是零因子。
(i) $\bar{r}=0 \Longleftrightarrow \operatorname{res}(\bar{f}, \bar{g})=0$。
(ii)如果$R / I$是UFD,则当且仅当$\operatorname{gcd}(\bar{f}, \bar{g})$是非常量时,则$\bar{r}=0$。

数学代写|现代代数代考Modern Algebra代写

数学代写|现代代数代考Modern Algebra代写 请认准exambang™. exambang™为您的留学生涯保驾护航。

Related Posts

Leave a comment