Scroll Top
19th Ave New York, NY 95822, USA

数学竞赛代写|Stanford大学数学夏令营SUMaC代写

Be sure you understand why $\sum_{k-1}^{m+1} x_{k}=\sum_{k=1}^{m} x_{k}+x_{m+1}$. As a slight generalization of this notation,
$$
\sum_{j=k}^{m} x_{j} \equiv x_{k}+\cdots+x_{m}
$$
It is also possible to change the variable of summation.
$$
\sum_{j=1}^{m} x_{j}=x_{1}+x_{2}+\cdots+x_{m}
$$
while if $r$ is an integer, the notation requires
$$
\sum_{j=1+r}^{m+r} x_{j}
$$
and so $\sum_{j-1}^{m} x_{j}=\sum_{j-1+r}^{m+r} x_{j}-r .$ Summation notation will be used throughout the book whenever it is convenient to do so.
Example 2.1.13 Add the fractions, $\frac{x}{x^{2}+y}+\frac{y}{x-1}$.
You add these just like they were numbers. Write the first expression as $\frac{x(z-1)}{\left(z^{2}+y\right)(x-1)}$ and the second as $\frac{y\left(z^{2}+y\right)}{(x-1)\left(x^{2}+y\right)}$. Then since these have the same common denominator, you add them as follows.
$$
\frac{x}{x^{2}+y}+\frac{y}{x-1}=\frac{x(x-1)}{\left(x^{2}+y\right)(x-1)}+\frac{y\left(x^{2}+y\right)}{(x-1)\left(x^{2}+y\right)}=\frac{x^{2}-x+y x^{2}+y^{2}}{\left(x^{2}+y\right)(x-1)}
$$
$2.2$ Exercises
Consider the expression $x+y(x+y)-x(y-x) \equiv f(x, y)$. Find $f(-1,2)$.
Show $-(a b)=(-a) b$.
Show on the number line the effect of multiplying a number by $-1$.
Add the fractions $\frac{x}{x^{2}-1}+\frac{x-1}{x+1}$.
Find a formula for $(x+y)^{2},(x+y)^{3}$, and $(x+y)^{4}$. Based on what you observe for these, give a formula for $(x+y)^{8}$.
When is it true that $(x+y)^{n}=x^{n}+y^{n}$ ?
Find the error in the following argument. Let $x=y=1$. Then $x y=y^{2}$ and so $x y-x^{2}=y^{2}-x^{2}$. Therefore, $x(y-x)=(y-x)(y+x)$. Dividing both sides by $(y-x)$ yields $x=x+y$. Now substituting in what these variables equal yields $1=1+1$.
Find the error in the following argument. $\sqrt{x^{2}+1}=x+1$ and so letting $x=2$, $\sqrt{5}=3$. Therefore, $5=9$.
Find the error in the following. Let $x=1$ and $y=2$. Then $\frac{1}{3}=\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=$ $1+\frac{1}{2}=\frac{3}{2}$. Then cross multiplying, yields $2=9$.
Find the error in the following argument. Let $x=3$ and $y=1$. Then $1=3-2=$ $3-(3-1)=x-y(x-y)=(x-y)(x-y)=2^{2}=4 .$Find the error in the following. $\frac{x y+y}{x}=y+y=2 y$. Now let $x=2$ and $y=2$ to obtain $3=4$.
Show the rational numbers satisfy the field axioms. You may assume the associative, commutative, and distributive laws hold for the integers.
Show that for $n$ a positive integer, $\sum_{k=0}^{n}(a+b k)=\sum_{k-0}^{n}(a+b(n-k))$. Explain why
$$
\begin{gathered}
2 \sum_{k=0}^{n}(a+b k)=\sum_{k=0}^{n} 2 a+b n=(n+1)(2 a+b n) \
\text { and } \operatorname{so} \sum_{k=0}^{n}(a+b k)=(n+1) \frac{a+(a+b n)}{2} .
\end{gathered}
$$
$2.3$ Set Notation
A set is just a collection of things called elements. Often these are also referred to as points in calculus. For example ${1,2,3,8}$ would be a set consisting of the elements $1,2,3$, and 8 . To indicate that 3 is an element of ${1,2,3,8}$, it is customary to write $3 \in{1,2,3,8} .9 \notin{1,2,3,8}$ means 9 is not an element of ${1,2,3,8}$. Sometimes a rule specifies a set. For example you could specify a set as all integers larger than 2. This would be written as $S={x \in \mathbb{Z}: x>2}$. This notation says: the set of all integers, $x$, such that $x>2$.
If $A$ and $B$ are sets with the property that every element of $A$ is an element of $B$, then $A$ is a subset of $B$. For example, ${1,2,3,8}$ is a subset of ${1,2,3,4,5,8}$, in symbols, ${1,2,3,8} \subseteq{1,2,3,4,5,8}$. The same statement about the two sets may also be written as ${1,2,3,4,5,8} \supseteq{1,2,3,8}$.
The union of two sets is the set consisting of everything which is contained in at least one of the sets, $A$ or $B$. As an example of the union of two sets, ${1,2,3,8} \cup{3,4,7,8}=$ ${1,2,3,4,7,8}$ because these numbers are those which are in at least one of the two sets. In general
$$
A \cup B \equiv{x: x \in A \text { or } x \in B}
$$
Be sure you understand that something which is in both $A$ and $B$ is in the union. It is not an exclusive or.
The intersection of two sets, $A$ and $B$ consists of everything which is in both of the sets. Thus ${1,2,3,8} \cap{3,4,7,8}={3,8}$ because 3 and 8 are those elements the two sets have in common. In general,
$$
A \cap B \equiv{x: x \in A \text { and } x \in B} .
$$
When with real numbers, $[a, b]$ denotes the set of real numbers $x$, such that $a \leq x \leq b$ and $[a, b)$ denotes the set of real numbers such that $a \leq x<b .(a, b)$ consists of the set of real numbers, $x$ such that $a<x<b$ and $(a, b]$ indicates the set of numbers, $x$ such that $a<x \leq b .[a, \infty)$ means the set of all numbers, $x$ such that $x \geq a$ and $(-\infty, a]$ means the set of all real numbers which are less than or equal to $a$. These sorts of sets of real numbers are called intervals. The two points, $a$ and $b$ are called endpoints of the interval. Other intervals such as $(-\infty, b)$ are defined by analogy to what was just explained. In general, the curved parenthesis indicates the end point it sits next to is not included while the square parenthesis indicates this end point is included. The reason that there will always be a curved parenthesis next to $\infty$ or $-\infty$ is that these are not real numbers. Therefore, they cannot be included in any set of real numbers. It is assumed that the reader is already familiar with order which is discussed in the next section more carefully. The emphasis here is on the geometric significance of these intervals. That is $[a, b)$ consists of all points of the number line which are to the right
variable of summation
确保你理解为什么 $\sum_{k-1}^{m+1} x_{k}=\sum_{k=1}^{m} x_{k}+x_{m+1}$。作为这个符号的轻微概括, $$ \sum_{j=k}^{m} x_{j} \equiv x_{k}+\cdots+x_{m} $$ 也可以改变求和的变量。 $$ \sum_{j=1}^{m} x_{j}=x_{1}+x_{2}+\cdots+x_{m} $$ 而如果 $r$ 是整数,则符号需要 $$ \sum_{j=1+r}^{m+r} x_{j} $$ 所以 $\sum_{j-1}^{m} x_{j}=\sum_{j-1+r}^{m+r} x_{j}-r .$ 求和符号将在本书中使用在方便的时候这样做。 例 2.1.13 添加分数 $\frac{x}{x^{2}+y}+\frac{y}{x-1}$。 您添加这些就像它们是数字一样。将第一个表达式写为 $\frac{x(z-1)}{\left(z^{2}+y\right)(x-1)}$,第二个表达式写为 $\frac{y\left(z ^{2}+y\right)}{(x-1)\left(x^{2}+y\right)}$。然后,由于它们具有相同的公分母,因此您将它们添加如下。 $$ \frac{x}{x^{2}+y}+\frac{y}{x-1}=\frac{x(x-1)}{\left(x^{2}+y\right) (x-1)}+\frac{y\left(x^{2}+y\right)}{(x-1)\left(x^{2}+y\right)}=\frac{x ^{2}-x+yx^{2}+y^{2}}{\left(x^{2}+y\right)(x-1)} $$ $2.2$ 练习 考虑表达式 $x+y(x+y)-x(y-x) \equiv f(x, y)$。求 $f(-1,2)$。 显示 $-(a b)=(-a) b$。 在数轴上显示一个数字乘以 $-1$ 的效果。 添加分数 $\frac{x}{x^{2}-1}+\frac{x-1}{x+1}$。 求 $(x+y)^{2}、(x+y)^{3}$ 和 $(x+y)^{4}$ 的公式。根据你对这些的观察,给出 $(x+y)^{8}$ 的公式。 $(x+y)^{n}=x^{n}+y^{n}$ 什么时候是真的? 在以下参数中查找错误。令 $x=y=1$。然后 $x y=y^{2}$ 等 $x y-x^{2}=y^{2}-x^{2}$。因此,$x(y-x)=(y-x)(y+x)$。两边除以 $(y-x)$ 得到 $x=x+y$。现在代入这些变量相等的结果是 $1=1+1$。 在以下参数中查找错误。 $\sqrt{x^{2}+1}=x+1$ 等令 $x=2$, $\sqrt{5}=3$。因此,$5=9$。 找出以下错误。令 $x=1$ 和 $y=2$。那么 $\frac{1}{3}=\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=$ $1+\frac{1}{2 }=\frac{3}{2}$。然后交叉相乘,得到 $2=9$。 在以下参数中查找错误。令 $x=3$ 和 $y=1$。那么 $1=3-2=$ $3-(3-1)=x-y(x-y)=(x-y)(x-y)=2^{2}=4 .$ 11. 找出以下错误。 $\frac{x y+y}{x}=y+y=2 y$。现在让 $x=2$ 和 $y=2$ 得到 $3=4$。 12. 证明有理数满足域公理。你可以假设结合律、交换律和分配律适用于整数。 13. 证明对于 $n$ 一个正整数,$\sum_{k=0}^{n}(a+bk)=\sum_{k-0}^{n}(a+b(nk))$ .解释为什么 $$ \开始{聚集} 2 \sum_{k=0}^{n}(a+b k)=\sum_{k=0}^{n} 2 a+b n=(n+1)(2 a+b n) \\ \text { 和 } \operatorname{so} \sum_{k=0}^{n}(a+b k)=(n+1) \frac{a+(a+b n)}{2} 。 \结束{聚集} $$ $2.3$ 设置符号 集合只是称为元素的事物的集合。通常这些也被称为微积分中的点。例如 $\{1,2,3,8\}$ 将是一个由元素 $1,2,3$ 和 8 组成的集合。为了表示 3 是 $\{1,2,3,8\}$ 的一个元素,习惯上写成 $3 \in\{1,2,3,8\} .9 \notin\{1,2 ,3,8\}$ 表示 9 不是 $\{1,2,3,8\}$ 的元素。有时,规则会指定一个集合。例如,您可以将一个集合指定为所有大于 2 的整数。这将被写为 $S=\{x \in \mathbb{Z}: x>2\}$。这个符号表示:所有整数的集合,$x$,使得 $x>2$。 如果 $A$ 和 $B$ 是具有 $A$ 的每个元素都是 $B$ 的元素的属性的集合,那么 $A$ 是 $B$ 的子集。例如,$\{1,2,3,8\}$ 是 $\{1,2,3,4,5,8\}$ 的子集,在符号中,$\{1,2,3, 8\}\subseteq\{1,2,3,4,5,8\}$。关于这两个集合的相同陈述也可以写成$\{1,2,3,4,5,8\}\supseteq\{1,2,3,8\}$。 两个集合的并集是由包含在至少一个集合$A$ 或$B$ 中的所有内容组成的集合。作为两个集合并集的例子,$\{1,2,3,8\}\cup\{3,4,7,8\}=$$\{1,2,3,4,7, 8\}$ 因为这些数字是至少在两组中的一组。一般来说 $$ A \cup B \equiv\{x: x \in A \text { 或 } x \in B\} $$ 确保您了解 $A$ 和 $B$ 中的某些内容在 union 中。它不是排他的或。 两个集合 $A$ 和 $B$ 的交集包含两个集合中的所有内容。因此 $\{1,2,3,8\} \cap\{3,4,7,8\}=\{3,8\}$ 因为 3 和 8 是这两组共有的元素。一般来说, $$ A \cap B \equiv\{x: x \in A \text { 和 } x \in B\} 。 $$ 当使用实数时,$[a, b]$ 表示实数集合 $x$,使得 $a \leq x \leq b$ 和 $[a, b)$ 表示实数集合使得 $ a \leq x

real analysis代写analysis 2, analysis 3请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

组合数学代考

统计作业代写

集合论数理逻辑代写案例

凸优化代写

统计exam代考

Related Posts

Leave a comment