Scroll Top
19th Ave New York, NY 95822, USA

数学代写|有限元方法代写finite differences method代考|MS-E1653 REMARKS

如果你也在 怎样代写有限元方法finite differences method MS-E1653这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。有限元方法finite differences method在数值分析中,是一类通过用有限差分逼近导数解决微分方程的数值技术。空间域和时间间隔(如果适用)都被离散化,或被分成有限的步骤,通过解决包含有限差分和附近点的数值的代数方程来逼近这些离散点的解的数值。

有限元方法finite differences method有限差分法将可能是非线性的常微分方程(ODE)或偏微分方程(PDE)转换成可以用矩阵代数技术解决的线性方程系统。现代计算机可以有效地进行这些线性代数计算,再加上其相对容易实现,使得FDM在现代数值分析中得到了广泛的应用。今天,FDM与有限元方法一样,是数值解决PDE的最常用方法之一。

有限元方法finite differences method作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的有限元方法finite differences method作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此有限元方法finite differences method作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在微积分Calculus Assignment代写方面经验极为丰富,各种微积分Calculus Assignment相关的作业也就用不着 说。

数学代写|有限元方法代写finite differences method代考|MS-E1653 REMARKS

数学代写|有限元方法作业代写finite differences method代考|REMARKS

The direct superposition of the matrices for 2D solid elements and plate elements are performed by assuming that the membrane effects are not coupled with the bending effects at the individual element level. This implies that the membrane forces will not result in any bending deformation, and bending forces will not cause any in-plane displacement in the element. For a shell structure in space, the membrane and bending effects are actually coupled globally, meaning that the membrane force at an element may result in bending deformations in the other elements, and the bending forces in an element may create in-plane displacements in other elements. The coupling effects are more significant for shell structures with a strong curvature. Therefore, for those structures, a finer element mesh should be used. Using the shell elements developed in this chapter implies that the curved shell structure has to be meshed by piecewise flat elements. This simplification in geometry needs to be taken into account when evaluating the results obtained.

数学代写|有限元方法作业代写finite differences method代考|NATURAL FREQUENCIES OF MICRO-MOTOR

In this case study, we examine the natural frequencies and mode shapes of the micro-motor described in Section 7.8. Natural frequencies are properties of a system, and it is important to study the natural frequencies and corresponding mode shapes of a system, because if a forcing frequency is applied to the system near to or at the natural frequency, resonance will occur. That is, there will be very large amplitude vibration that might be disastrous in some situations. In this case study, the flexural vibration modes of the rotor of the micro-motor will be analysed.

The geometry of the micro-motor’s rotor will be the same as that of Figure 7.22 , and the elastic properties will remain unchanged using the properties in Table 7.2. To show the mode shapes more clearly, we model the rotor as a whole rather than as a symmetrical quarter model. However, using a quarter model is still possible, but one has to take note of symmetrical and anti-symmetrical modes (to be discussed in Chapter 11). Figure 8.6 shows the finite element model of the micro-motor containing 480 nodes and 384 elements. To study the flexural vibration modes, plate elements discussed in this chapter ought to be used. However, as mentioned earlier in this chapter, most commercial finite element packages, including ABAQUS, do not allow the use of pure plate elements. Therefore, shell elements will be utilized here for meshing up the model of the micro-motor. 2D, four nodal shell elements (S4) are used. Recall that each shell element has three translational degrees of freedom and three rotational degrees of freedom, and it is actually a superposition of a plate element with a 2D solid element. Hence, to obtain just the flexural modes, we would need to constrain the degrees of freedom corresponding to the $x$ translational displacement and the $y$ translational displacement, as well as the rotation about the $z$ axis. This would leave each shell element with the three degrees of freedom of a plate element. As before, the nodes along the edge of the centre hole will be constrained to be fixed. Since we are interested in the natural frequencies, there will be no external forces on the rotor.

数学代写|有限元方法代写finite differences method代考|MS-E1653 REMARKS

有限元方法代写

数学代写|有限元方法作业代写FINITE DIFFERENCES METHOD代考|REMARKS

二维实体单元和板单元矩阵的直接叠加是通过假设膜效应不与单个单元级别的弯曲效应耦合来执行的。这意味着膜片力不会导致任何弯曲变形,并且弯曲力不会在单元中引起任何平面内位移。对于空间中的壳结构,膜效应和弯曲效应实际上是全局耦合的,这意味着一个单元的膜力可能会导致其他单元的弯曲变形,而一个单元的弯曲力可能会导致其他单元的面内位移元素。对于具有强曲率的壳结构,耦合效应更为显着。因此,对于这些结构,应该使用更精细的单元网格。使用本章开发的壳单元意味着弯曲的壳结构必须由分段平面单元划分网格。在评估获得的结果时,需要考虑这种几何简化。

数学代写|有限元方法作业代写FINITE DIFFERENCES METHOD代考|NATURAL FREQUENCIES OF MICRO-MOTOR

在本案例研究中,我们检查了第 7.8 节中描述的微型电机的固有频率和振型。固有频率是系统的属性,研究系统的固有频率和相应的振型非常重要,因为如果在接近或处于固有频率处向系统施加强制频率,就会发生共振。也就是说,会有非常大的振幅振动,在某些情况下可能是灾难性的。在本案例研究中,将分析微型电机转子的弯曲振动模式。

微型电机转子的几何形状与图 7.22 相同,弹性属性将保持不变,使用表 7.2 中的属性。为了更清楚地显示振型,我们将转子建模为一个整体,而不 是对称的四分之一模型。然而,仍然可以使用四分之一模型,但必须注意对称和反对称模式tobediscussedinChapter 11. 图 8.6 显示了微电机的 有限元模型,包含 480 个节点和 384 个单元。要研究弯曲振动模式,应该使用本章讨论的板单元。然而,正如本章前面提到的,大多数商业有限元 包,包括 ABAQUS,不允许使用纯板单元。因此,这里将使用壳单元对微电机模型进行网格化。二维,四节点壳单元 $S 4$ 被使用。回想一下,每个 壳单元都有三个平移自由度和三个旋转自由度,它实际上是一个板单元与一个二维实体单元的嗔加。因此,为了仅获得弯曲模式,我们需要约束 对应于 $x$ 平移位移和 $y$ 平移位移,以及关于旋转 $z$ 轴。这将使每个壳单元具有板单元的三个自由度。和以前一样,沿着中心孖边缘的节点将被约束为 固定的。由于我们对固有频率感兴趣,因此转子上不会有外力。

数学代写|有限元方法作业代写finite differences method代考

数学代写|有限元方法作业代写finite differences method代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

概率论代考

离散数学代写

集合论数理逻辑代写案例

时间序列分析代写

离散数学网课代修

Leave a comment