Scroll Top
19th Ave New York, NY 95822, USA

经济代写|EC309 Econometrics

MY-ASSIGNMENTEXPERT™可以为您提供 lse.ac.uk EC309 Econometrics计量经济学的代写代考辅导服务!

这是伦敦政经学校计量经济学课程的代写成功案例。

经济代写|EC309 Econometrics

EC309课程简介

Availability

This course is available on the BSc in Econometrics and Mathematical Economics and BSc in Mathematics and Economics. This course is available with permission as an outside option to students on other programmes where regulations permit and to General Course students.

Pre-requisites

Students must have completed Principles of Econometrics (EC221).

A good knowledge of linear algebra, calculus and statistical theory is essential, so MA100 and either ST102 or ST109 in combination with EC1C1, or equivalent, are required. Students taking this course who are not on the BSc Econometrics and Mathematical Economics or BSc Mathematics and Economics should consult with Prof Otsu before selecting this course

Prerequisites 

Introduction to asymptotic theory; Method of moments; Hypothesis testing and confidence intervals; Asymptotic theory for linear OLS, instrumental variables, and generalized method of moments (GMM) estimators; Nonparametric density estimation and regression; General large sample theory; Estimation and inference of nonlinear models (Maximum likelihood, Nonlinear Least Squares, GMM); General hypothesis testing and model specification; Systems of equations; Time series analysis and dynamic models.

Formative coursework

Written answers to set problems will be expected on a weekly basis. Students are also expected to make positive contributions to class discussions.

EC309 Econometrics HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

Exercise 2.1 Find $\mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left[y \mid \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3\right] \mid \boldsymbol{x}_1, \boldsymbol{x}_2\right] \mid \boldsymbol{x}_1\right]$.
Exercise 2.2 If $\mathbb{E}[y \mid x]=a+b x$, find $\mathbb{E}[y x]$ as a function of moments of $x$.
Exercise 2.3 Prove Theorem 2.4.4 using the law of iterated expectations.
Exercise 2.4 Suppose that the random variables $y$ and $x$ only take the values 0 and 1 , and have the following joint probability distribution
\begin{tabular}{|c|cc|}
\hline & $x=0$ & $x=1$ \
\hline$y=0$ & .1 & .2 \
$y=1$ & .4 & .3 \
\hline
\end{tabular}
Find $\mathbb{E}[y \mid x], \mathbb{E}\left[y^2 \mid x\right]$ and var $[y \mid x]$ for $x=0$ and $x=1$.

问题 2.

Exercise 2.5 Show that $\sigma^2(\boldsymbol{x})$ is the best predictor of $e^2$ given $\boldsymbol{x}$ :
(a) Write down the mean-squared error of a predictor $h(\boldsymbol{x})$ for $e^2$.
(b) What does it mean to be predicting $e^2$ ?
(c) Show that $\sigma^2(\boldsymbol{x})$ minimizes the mean-squared error and is thus the best predictor.
Exercise 2.6 Use $y=m(\boldsymbol{x})+e$ to show that
$$
\operatorname{var}[y]=\operatorname{var}[m(\boldsymbol{x})]+\sigma^2
$$
Exercise 2.7 Show that the conditional variance can be written as
$$
\sigma^2(\boldsymbol{x})=\mathbb{E}\left[y^2 \mid \boldsymbol{x}\right]-(\mathbb{E}[y \mid \boldsymbol{x}])^2
$$
Exercise 2.8 Suppose that $y$ is discrete-valued, taking values only on the non-negative integers, and the conditional distribution of $y$ given $\boldsymbol{x}$ is Poisson:
$$
\mathbb{P}[y=j \mid \boldsymbol{x}]=\frac{\exp \left(-\boldsymbol{x}^{\prime} \boldsymbol{\beta}\right)\left(\boldsymbol{x}^{\prime} \boldsymbol{\beta}\right)^j}{j !}, \quad j=0,1,2, \ldots
$$
Compute $\mathbb{E}[y \mid \boldsymbol{x}]$ and var $[y \mid \boldsymbol{x}]$. Does this justify a linear regression model of the form $y=\boldsymbol{x}^{\prime} \boldsymbol{\beta}+e$ ?
Hint: If $\mathbb{P}[y=j]=\frac{\exp (-\lambda) \lambda^j}{j !}$ then $\mathbb{E}[y]=\lambda$ and $\operatorname{var}(y)=\lambda$.

问题 3.

Exercise 2.9 Suppose you have two regressors: $x_1$ is binary (takes values 0 and 1) and $x_2$ is categorical with 3 categories $(A, B, C)$. Write $\mathbb{E}\left[y \mid x_1, x_2\right]$ as a linear regression.
Exercise 2.10 True or False. If $y=x \beta+e, x \in \mathbb{R}$, and $\mathbb{E}[e \mid x]=0$, then $\mathbb{E}\left[x^2 e\right]=0$.
Exercise 2.11 True or False. If $y=x \beta+e, x \in \mathbb{R}$, and $\mathbb{E}[x e]=0$, then $\mathbb{E}\left[x^2 e\right]=0$.
Exercise 2.12 True or False. If $y=\boldsymbol{x}^{\prime} \boldsymbol{\beta}+e$ and $\mathbb{E}[e \mid \boldsymbol{x}]=0$, then $e$ is independent of $\boldsymbol{x}$.

Exercise 2.13 True or False. If $y=\boldsymbol{x}^{\prime} \boldsymbol{\beta}+e$ and $\mathbb{E}[\boldsymbol{x} e]=\mathbf{0}$, then $\mathbb{E}[e \mid \boldsymbol{x}]=0$.
Exercise 2.14 True or False. If $y=\boldsymbol{x}^{\prime} \boldsymbol{\beta}+e, \mathbb{E}[e \mid \boldsymbol{x}]=0$, and $\mathbb{E}\left[e^2 \mid \boldsymbol{x}\right]=\sigma^2$, a constant, then $e$ is independent of $\boldsymbol{x}$.

Exercise 2.15 Consider the intercept-only model $y=\alpha+e$ defined as the best linear predictor. Show that $\alpha=\mathbb{E}[y]$.

问题 4.

Exercise 2.16 Let $x$ and $y$ have the joint density $f(x, y)=\frac{3}{2}\left(x^2+y^2\right)$ on $0 \leq x \leq 1,0 \leq y \leq 1$. Compute the coefficients of the best linear predictor $y=\alpha+\beta x+e$. Compute the conditional mean $m(x)=\mathbb{E}[y \mid x]$. Are the best linear predictor and conditional mean different?
Exercise 2.17 Let $x$ be a random variable with $\mu=\mathbb{E}[x]$ and $\sigma^2=\operatorname{var}[x]$. Define
$$
g\left(x \mid \mu, \sigma^2\right)=\left(\begin{array}{c}
x-\mu \
(x-\mu)^2-\sigma^2
\end{array}\right) .
$$
Show that $\mathbb{E}[g(x \mid m, s)]=0$ if and only if $m=\mu$ and $s=\sigma^2$.
Exercise 2.18 Suppose that
$$
\boldsymbol{x}=\left(\begin{array}{c}
1 \
x_2 \
x_3
\end{array}\right)
$$
and $x_3=\alpha_1+\alpha_2 x_2$ is a linear function of $x_2$.
(a) Show that $\boldsymbol{Q}_{\boldsymbol{x} \boldsymbol{x}}=\mathbb{E}\left[\boldsymbol{x}^{\prime}\right]$ is not invertible.
(b) Use a linear transformation of $\boldsymbol{x}$ to find an expression for the best linear predictor of $y$ given $\boldsymbol{x}$. (Be explicit, do not just use the generalized inverse formula.)

经济代写|EC309 Econometrics

MY-ASSIGNMENTEXPERT™可以为您提供 LSE.AC.UK EC309 ECONOMETRICS计量经济学的代写代考和辅导服务!

Related Posts

Leave a comment