如果你也在 怎样代写抽样调查Survey sampling 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。抽样调查Survey sampling是数学工程这一广泛新兴领域中的一个自然组成部分。例如,我们可以断言,数学工程之于今天的数学系,就像数学物理之于一个世纪以前的数学系一样;毫不夸张地说,数学在诸如语音和图像处理、信息理论和生物医学工程等工程学科中的基本影响。
抽样调查Survey sampling是主流统计的边缘。这里的特殊之处在于,我们有一个具有某些特征的有形物体集合,我们打算通过抓住其中一些物体并试图对那些未被触及的物体进行推断来窥探它们。这种推论传统上是基于一种概率论,这种概率论被用来探索观察到的事物与未观察到的事物之间的可能联系。这种概率不被认为是在统计学中,涵盖其他领域,以表征我们感兴趣的变量的单个值之间的相互关系。但这是由调查抽样调查人员通过任意指定的一种技术从具有预先分配概率的对象群体中选择样本而创建的。
my-assignmentexpert™抽样调查Survey sampling代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的抽样调查Survey sampling作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此抽样调查Survey sampling作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在统计代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计代考服务。我们的专家在抽样调查Survey sampling代写方面经验极为丰富,各种抽样调查Survey sampling相关的作业也就用不着 说。
我们提供的抽样调查Survey sampling STAT392及其相关学科的代写,服务范围广, 其中包括但不限于:
统计代写|抽样调查代考Survey sampling代考|Ratio- and Regression-Adjusted Estimators
Although an exact formula for $V_p\left(\bar{t}_R\right)$ based on SRSWOR, along with one for its unbiased estimator, is given in section 2.4 .1 , it is traditional to turn to their respective approximations
$$
\begin{aligned}
\bar{M}^{\prime} & =\frac{1-f}{n} \frac{1}{N-1} \sum_1^N\left(Y_i-R X_i\right)^2 \
v_0 & =\frac{1-f}{n} \frac{1}{n-1} \sum_s\left(Y_i-r X_i\right)^2 .
\end{aligned}
$$
J. N. K. RAO (1968, 1969) found empirically for $n \leq 12$ that $\Delta=\bar{M}^{\prime}-V_p\left(\bar{t}_R\right)<0$ for many actual populations, but later, WU and DENG (1983) found both positive and negative values of $\Delta$ for $n=32$, but none appreciably high in magnitude with more extensive empirical investigations. So it is considered adequate in practice to estimate $\bar{M}^\rho$ rather than $V_p\left(t_R\right)$ if $n$ is not too small.
Since $\bar{M}^{\prime} / \bar{X}^2$ is an approximation for $V_p(r)$ an estimator for it, in case $\bar{X}$ is unknown, is usually taken as
$$
v_0 / \bar{x}^2 \text {. }
$$
In case $X$ is known, an alternative customary estimator for $\bar{M}^{\prime}$ is therefore
$$
v_2=\left(\frac{\bar{X}}{\bar{x}}\right)^2 v_0 .
$$
Wu (1982) suggests instead a ratio adjustment to $v_0$ to propose another alternative estimator for $\bar{M}^{\prime}$ as
$$
v_1=\left(\frac{\bar{X}}{\bar{x}}\right) v_0
$$
and goes a step further to propose a class of estimators
$$
v_g=\left(\frac{\bar{X}}{\bar{x}}\right)^g v_o
$$
统计代写|抽样调查代考Survey sampling代考|Model-Derived and Jackknife Estimators
For a decisive choice among the estimators of $\bar{M}^{\prime}$ keeping in mind their $p$ biases, design MSEs (often called measures of stability of variance estimators), and efficacy in yielding design-based confidence intervals one recognized approach is to examine empirical evidences of their relative performances. Before briefly narrating some such exercises reported in the literature, let us mention some more competitive variance estimators that have emerged through the model-based predictive approach in the context of applicability of ratio predictor.
If the model $\mathcal{M}_{11}$ (cf. section 4.1.2) is true, $\bar{t}_R$ is the BLUP for $\bar{Y}$ with
$$
\begin{aligned}
& B_m\left(\bar{t}_R\right)=E_m\left(\bar{t}_R-\bar{Y}\right)=0 \
& V_m=V_m\left(\bar{t}_R-\bar{Y}\right)=\frac{1-f}{n} \frac{\bar{X} \bar{x}_r}{\bar{x}} \sigma^2=g(s) \sigma^2 \text {, say. } \
&
\end{aligned}
$$
Since
$$
\hat{\sigma}^2=\frac{1}{n-1} \sum_s\left[\frac{e_i^2}{X_i}\right]
$$
has
$$
E_m\left(\hat{\sigma}^2\right)=\sigma^2
$$
under $\mathcal{M}_{11}$,
$$
v_L=g(s) \hat{\sigma}^2
$$
is an $m$-unbiased estimator for $V_m$, no matter how a sample $s$ of size $n$ is drawn.
A sample of size $n$ containing the largest $X_i$ ‘s, a so-called extreme sample, yields the minimal value of $V_m$ and hence is the optimal.
Suppose $\mathcal{M}{11}$ is incorrect but $\mathcal{M}{11}^{\prime}$ holds, that is,
$$
\begin{aligned}
& E_m\left(Y_i\right)=\alpha+\beta X_i, \alpha \neq 0 \
& V_m\left(Y_i\right)=\sigma^2 X_i .
\end{aligned}
$$
Then $t_R$ is still $m$ unbiased if based on a balanced sample for which $\bar{x}=\bar{X}=\bar{x}r$ and $v_L$ is $m$ unbiased for $V_m$. Since from a study of the sample $\alpha$ may not be conclusively ignored, a balanced rather than an extreme sample is preferred in practice in using $\bar{t}_R$ and $v_L$. But if $\mathcal{M}{12}$ is true, that is, $E_m\left(Y_i\right)=\beta X_i$ and
(a) $V_m\left(Y_i\right)=\sigma^2 X_i^2$,
then
$$
V_m\left(\bar{t}_R-\bar{Y}\right)=\sigma^2\left[\left(\frac{1-f}{n}\right)^2\left(\frac{\bar{x}_r}{\bar{x}}\right)^2 \sum_s X_i^2+\frac{1}{N^2} \sum_r X_i^2\right]
$$
while
$$
E_m\left(v_L\right)=\frac{1-f}{n} \frac{\bar{X} \bar{x}_r}{\bar{x}^2} \frac{\sigma^2}{n-1}\left(n \bar{x}^2-\frac{1}{n} \sum_s X_i^2\right)
$$
and the relative bias
$$
\frac{E_m\left(v_L-V_m\right)}{V_m} \text { is approximately }-\frac{\sum_s\left(X_i-\bar{x}\right)^2}{\sum_s X_i^2}
$$
抽样调查代写
统计代写|抽样调查代考Survey sampling代考|Ratio- and Regression-Adjusted Estimators
尽管在2.4 .1节中给出了基于SRSWOR的$V_p\left(\bar{t}_R\right)$的精确公式及其无偏估计量的公式,但传统上还是使用它们各自的近似值
$$
\begin{aligned}
\bar{M}^{\prime} & =\frac{1-f}{n} \frac{1}{N-1} \sum_1^N\left(Y_i-R X_i\right)^2 \
v_0 & =\frac{1-f}{n} \frac{1}{n-1} \sum_s\left(Y_i-r X_i\right)^2 .
\end{aligned}
$$
j.n . K. RAO(1968, 1969)对$n \leq 12$的实证发现$\Delta=\bar{M}^{\prime}-V_p\left(\bar{t}_R\right)<0$适用于许多实际人群,但后来,WU和DENG(1983)发现$n=32$的$\Delta$值既为正值,也为负值,但经过更广泛的实证调查,其幅度都不明显。因此,在实践中,如果$n$不是太小,估计$\bar{M}^\rho$而不是$V_p\left(t_R\right)$被认为是足够的。
由于$\bar{M}^{\prime} / \bar{X}^2$是$V_p(r)$的近似值,因此在$\bar{X}$未知的情况下,通常将其视为
$$
v_0 / \bar{x}^2 \text {. }
$$
如果已知$X$,则使用$\bar{M}^{\prime}$的另一种习惯估计量
$$
v_2=\left(\frac{\bar{X}}{\bar{x}}\right)^2 v_0 .
$$
Wu(1982)建议对$v_0$进行比率调整,以提出$\bar{M}^{\prime}$ as的另一种替代估计值
$$
v_1=\left(\frac{\bar{X}}{\bar{x}}\right) v_0
$$
并进一步提出了一类估计量
$$
v_g=\left(\frac{\bar{X}}{\bar{x}}\right)^g v_o
$$
统计代写|抽样调查代考Survey sampling代考|Model-Derived and Jackknife Estimators
要在$\bar{M}^{\prime}$估计器中做出决定性的选择,请记住它们的$p$偏差、设计mse(通常称为方差估计器的稳定性度量)和产生基于设计的置信区间的有效性,一种公认的方法是检查它们相对表现的经验证据。在简要叙述文献中报道的一些此类练习之前,让我们提一下在比率预测器适用性的背景下,通过基于模型的预测方法出现的一些更具竞争力的方差估计器。
如果模型$\mathcal{M}{11}$(参见第4.1.2节)为真,则$\bar{t}_R$是带的$\bar{Y}$的BLUP $$ \begin{aligned} & B_m\left(\bar{t}_R\right)=E_m\left(\bar{t}_R-\bar{Y}\right)=0 \ & V_m=V_m\left(\bar{t}_R-\bar{Y}\right)=\frac{1-f}{n} \frac{\bar{X} \bar{x}_r}{\bar{x}} \sigma^2=g(s) \sigma^2 \text {, say. } \ & \end{aligned} $$ 自从 $$ \hat{\sigma}^2=\frac{1}{n-1} \sum_s\left[\frac{e_i^2}{X_i}\right] $$ 有 $$ E_m\left(\hat{\sigma}^2\right)=\sigma^2 $$ 在$\mathcal{M}{11}$下,
$$
v_L=g(s) \hat{\sigma}^2
$$
是$V_m$的$m$ -无偏估计量,无论大小为$n$的样本$s$如何绘制。
包含最大的$X_i$的大小为$n$的样本,即所谓的极端样本,产生最小的$V_m$值,因此是最优的。
假设$\mathcal{M}{11}$不正确,但$\mathcal{M}{11}^{\prime}$成立,也就是说,
$$
\begin{aligned}
& E_m\left(Y_i\right)=\alpha+\beta X_i, \alpha \neq 0 \
& V_m\left(Y_i\right)=\sigma^2 X_i .
\end{aligned}
$$
那么$t_R$仍然是$m$无偏的,如果基于一个平衡样本,$\bar{x}=\bar{X}=\bar{x}r$和$v_L$对$V_m$是$m$无偏的。由于对样本$\alpha$的研究不能最终忽略,因此在使用$\bar{t}_R$和$v_L$时,在实践中首选平衡样本而不是极端样本。但如果$\mathcal{M}{12}$为真,即$E_m\left(Y_i\right)=\beta X_i$和
(a) $V_m\left(Y_i\right)=\sigma^2 X_i^2$;
然后
$$
V_m\left(\bar{t}_R-\bar{Y}\right)=\sigma^2\left[\left(\frac{1-f}{n}\right)^2\left(\frac{\bar{x}_r}{\bar{x}}\right)^2 \sum_s X_i^2+\frac{1}{N^2} \sum_r X_i^2\right]
$$
同时
$$
E_m\left(v_L\right)=\frac{1-f}{n} \frac{\bar{X} \bar{x}_r}{\bar{x}^2} \frac{\sigma^2}{n-1}\left(n \bar{x}^2-\frac{1}{n} \sum_s X_i^2\right)
$$
相对偏差
$$
\frac{E_m\left(v_L-V_m\right)}{V_m} \text { is approximately }-\frac{\sum_s\left(X_i-\bar{x}\right)^2}{\sum_s X_i^2}
$$
统计代写|抽样调查代考Survey sampling代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。