Scroll Top
19th Ave New York, NY 95822, USA

数学代写|线性规划代写Linear Programming代考|ISE505

如果你也在 怎样代写线性规划Linear Programming 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。线性规划Linear Programming是执行优化的最简单方法之一。通过一些简化的假设,它可以帮助你解决一些非常复杂的LP问题和线性优化问题。

线性规划Linear Programming是一种数学建模技术,涉及在考虑各种约束的情况下最大化或最小化线性函数。事实证明,这种方法在指导不同领域的定量决策方面很有用,比如商业规划、工业工程,在某种程度上还包括社会科学和物理科学。线性规划,也称为线性优化,是一种在需求由线性关系定义的数学模型中实现最佳可能结果的方法。

线性规划Linear Programming代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的线性规划Linear Programming作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此线性规划Linear Programming作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|线性规划代写Linear Programming代考|ISE505

数学代写|线性规划代写Linear Programming代考|Conditions for the occurence of degeneracy in a L.P. P.

In a L.P.P. the degeneracy may appear in the following two ways :

The degeneracy may appear in a L.P.P. at the very first iteration when some component of vector $b$ i.e. some $b_i$, is zero.

If none of the component of $\mathrm{b}$ is zero at any iteration and choice of the outgoing vector $\beta_r$ at the same iteration is not unique,the next solution is bound to be degenerate.
Proofs. 1. Since we always start with the basis matrix $B$ as an identity matrix, therefore at the first iteration, we have
$$
\mathrm{x}B=B^{-1} \mathrm{~b}=I_m \mathrm{~b}=\mathrm{b} . $$ But some component of $b$ may be zero which implies that some component $x{B i}$ of $x_B$ is zero. Thus the solution at the first iteration become
(a) degenerate if some $x_{B i}=0$, corresponding to which $y_{i k}>0$.
Let $x_{B i}=0$ and $y_{r k}>0$, then
$$
\frac{x_{B r}}{y_{r k}}=\operatorname{Mini}i\left{\frac{x{B i}}{y_{i k}}, y_{i k}>0\right}=0
$$
$\therefore$ The value of the objective function becomes
$$
Z^{\prime}=Z+\frac{x_{B r}}{y_{r k}} \cdot\left(c_j-Z_j\right)
$$
or
$$
Z^{\prime}=Z .
$$
[see equation (10), Thm. § 3.6]
Hence in this case the value of the objective function remains unchanged at the first iteration.
(b) non-degenerate if some $x_{B i}=0$, corresponding to which $y_{i k}<0$.

数学代写|线性规划代写Linear Programming代考|Charne’s Perturbation Method

In this method the requirement vector $b$ is altered very slightly (this is referred as perturbing b) and thus the original L.P.P. is transformed to a new L.P.P. which is termed, as perturbed problem.
Degeneracy occurs when at least one $x_{B i}$ vanishes. If $x_{B 1}, x_{B 2}, \ldots, x_{B m}$ form a basic feasible solution with $B$ as the basis then,
$$
\mathbf{b}=\beta_1 x_{B 1}+\beta_2 x_{B 2}+\ldots \div \beta_m x_{B m} .
$$
In case of degeneracy when some $x_{B i}=0$, we do not require a positive amount of each vector $\beta_1, \beta_2, \ldots, \beta_m$ to write $b$ as a linear combination of $\beta_i$ ‘s. If $b$ is altered very slightly to $b(\varepsilon)$ then we may hope fo requiring positive amounts of each basis vector $\left(\beta_i\right)$ for every feasible basis to write b $(\varepsilon)$ as a linear combination of $\beta_i$ ‘s. We shall show that perturbed pioblem never become degenerate and therefore no basis is ever repeated and hence there can be no cycling. After solving the perturbed problem the solution of the original problem is immediatcly available by taking the perturbation equal to zero.

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\text { Consider theL. P.P., } \
\text { s.t. } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq 0
\end{array}\right}
\end{array}
$$
Let $B=\beta_1, \beta_2, \ldots, \beta_m$ ) be the basis at any iteration and let there be a tie in selecting the departing vector by minimum ratic rule, so that the next B.F.S. is degenerate. The solution at this iteration is given by
$$
\mathbf{x}B=B^{-1} \mathbf{b} $$ Suppose that $\mathbf{b} \geq 0$ is replaced by $\mathbf{b}(\varepsilon)$ given by $$ \mathbf{b}(\varepsilon)=\mathbf{b}+\sum{j=1}^n \alpha_j \varepsilon^j .
$$
Where $\sum_{j=1}^n \alpha_j \varepsilon^j$ is a polynomial in $\varepsilon$ with vector coefficient $\alpha_j$ for $j=1,2, \ldots, n$ which are the vectors in $A$. The number $\varepsilon$ is taken to be positive and very small. If $\varepsilon_{\max }$ is a miximum value of $\varepsilon$ then we may assume that $0<\varepsilon<\varepsilon_{\max }$

数学代写|线性规划代写Linear Programming代考|ISE505

线性规划代写

数学代写|线性规划代写Linear Programming代考|Conditions for the occurence of degeneracy in a L.P. P.

在L.P.P.中,简并可能以以下两种方式出现:

当向量$b$的某个分量(即某个$b_i$)为零时,L.P.P.在第一次迭代时可能出现简并性。

如果在任何迭代中$\mathrm{b}$的分量都不为零,并且在同一迭代中输出向量$\beta_r$的选择不是唯一的,则下一个解必然是简并的。
证明。因为我们总是从基矩阵$B$作为单位矩阵开始,所以在第一次迭代中,我们有
$$
\mathrm{x}B=B^{-1} \mathrm{~b}=I_m \mathrm{~b}=\mathrm{b} . $$但是$b$的某个分量可能是零这意味着$x_B$的某个分量$x{B i}$是零。因此,第一次迭代的解决方案变成
(a)简并若有的$x_{B i}=0$,对应其中的$y_{i k}>0$。
那么就让$x_{B i}=0$和$y_{r k}>0$吧
$$
\frac{x_{B r}}{y_{r k}}=\operatorname{Mini}i\left{\frac{x{B i}}{y_{i k}}, y_{i k}>0\right}=0
$$
$\therefore$目标函数的值为
$$
Z^{\prime}=Z+\frac{x_{B r}}{y_{r k}} \cdot\left(c_j-Z_j\right)
$$

$$
Z^{\prime}=Z .
$$
[见式(10)];§3.6]
因此,在这种情况下,目标函数的值在第一次迭代时保持不变。
(b)非简并若有的$x_{B i}=0$,对应其中的$y_{i k}<0$。

数学代写|线性规划代写Linear Programming代考|Charne’s Perturbation Method

在这种方法中,需求向量$b$被略微改变(这被称为扰动b),因此原始的L.P.P.被转换为一个新的L.P.P.,称为扰动问题。
简并发生在至少一个$x_{B i}$消失的时候。若$x_{B 1}, x_{B 2}, \ldots, x_{B m}$以$B$为基础形成基本可行解,则
$$
\mathbf{b}=\beta_1 x_{B 1}+\beta_2 x_{B 2}+\ldots \div \beta_m x_{B m} .
$$
万一简并时有的$x_{B i}=0$,我们不需要每个向量的正数$\beta_1, \beta_2, \ldots, \beta_m$来将$b$写成$\beta_i$ ‘s的线性组合。如果$b$被稍微改变为$b(\varepsilon)$,那么我们可能希望每个基向量$\left(\beta_i\right)$的正数为每个可行基来将b $(\varepsilon)$写成$\beta_i$ ‘s的线性组合。我们将表明,摄动问题永远不会退化,因此没有基是永远不会退化的重复,因此不可能有循环。在求解扰动问题后,通过取扰动等于零,可以立即得到原问题的解。

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\text { Consider theL. P.P., } \
\text { s.t. } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq 0
\end{array}\right}
\end{array}
$$
设$B=\beta_1, \beta_2, \ldots, \beta_m$)为任意迭代的基,且在选取出发向量时采用最小规则有一个关联,使得下一个B.F.S.是简并的。这个迭代的解由
$$
\mathbf{x}B=B^{-1} \mathbf{b} $$假设$\mathbf{b} \geq 0$被$$ \mathbf{b}(\varepsilon)=\mathbf{b}+\sum{j=1}^n \alpha_j \varepsilon^j .
$$给出的$\mathbf{b}(\varepsilon)$所取代
其中$\sum_{j=1}^n \alpha_j \varepsilon^j$是$\varepsilon$中的一个多项式,$j=1,2, \ldots, n$的矢量系数$\alpha_j$是$A$中的矢量。数字$\varepsilon$被认为是正的,非常小。如果$\varepsilon_{\max }$是$\varepsilon$的最大值,那么我们可以假设 $0<\varepsilon<\varepsilon_{\max }$

数学代写|线性规划代写Linear Programming代考|Definition of Degeneracy

数学代写|线性规划代写Linear Programming代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment