Scroll Top
19th Ave New York, NY 95822, USA

物理代考| Model Problem 量子力学代写

物理代考| Model Problem 量子力学代写

物理代写

5.1 Model Problem
Consider two particles moving in one dimension along the $x$-axis. Particle one is free to move in a large circle as in Fig. 2.1, so it satisfies periodic boundary conditions. It has the eigenfunctions and eigenvalues of Eqs. (2.31) and (2.32)
$$
\begin{aligned}
\psi_{n}(x) &=\frac{1}{\sqrt{L}} e^{2 \pi i n x / L} & & ; n=0, \pm 1, \pm 2, \cdots \
E_{n} &=\frac{(2 \pi \hbar)^{2}}{2 m L^{2}} n^{2} & & ; \text { particle one }
\end{aligned}
$$
The eigenfunctions satisfy the orthonormality condition in Eq. (2.33).
The second particle is confined to a box of a much shorter length as in Fig. $3.1$ $(3.13)^{1}$
$\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad ; n=1,2,3, \cdots$
$$
E_{n}=\frac{(\pi \hbar)^{2}}{2 m L^{2}} n^{2}
$$
The starting hamiltonian and general solution for this two-particle them are then orthonormal. It is assumed here that the box is completely transparent the first particle, which passes right through it. $^{2}$ The $H_{0}=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}+V_{\text {box }}\left(x_{2}\right)$ $\Psi_{0}\left(x_{1}, x_{2}, t\right)=\sum_{n_{1}, n_{2}} c_{n_{1}, n_{2}}^{0}(t) \psi_{n_{1}}\left(x_{1}\right) e^{-i E_{n_{1}} t / \hbar} \psi_{n_{2}}\left(x_{2}\right) e^{-i E_{n_{2}} t / \hbar}$ This wave function satisfies the Schrödinger equation $$ i \hbar \frac{\partial \Psi_{0}\left(x_{1}, x_{2}, t\right)}{\partial t}=H_{0} \Psi_{0}\left(x_{1}, x_{2}, t\right) $$
We have left a time-dependence in the coefficients $c_{n_{1}, n_{2}}^{0}(t)$ for generality, but let us see what
$$
\begin{aligned}
&\sum_{n_{1}, n_{2}}\left[i \hbar \frac{d c_{n_{1}, n_{2}}^{0}(t)}{d t}+\left(E_{n_{1}}+E_{n_{2}}\right) c_{n_{1}, n_{2}}^{0}(t)\right] \psi_{n_{1}}\left(x_{1}\right) e^{-i E_{n_{1}} t / \hbar} \psi_{n_{2}}\left(x_{2}\right) e \
&=\sum_{n_{1}, n_{2}}\left(E_{n_{1}}+E_{n_{2}}\right) c_{n_{1}, n_{2}}^{0}(t) \psi_{n_{1}}\left(x_{1}\right) e^{-i E_{n_{1}} t / \hbar} \psi_{n_{2}}\left(x_{2}\right) e^{-i E_{n_{2}} t / \hbar}
\end{aligned}
$$
Upon cancellation of the common terms, and the use of the orthonormality of the eigenfunctions to extract a given coefficient, one obtains
$\frac{d c_{n_{1}, n_{2}}^{0}(t)}{d t}=0$
coef- (5.8) tiile
$c_{n_{1}, n_{2}}^{0}(t)=c_{n_{1}, n_{2}}^{0}(0) \quad ;$ time-independent
If we were to start in a given state $\psi_{n_{1}^{0}}\left(x_{1}\right) \psi_{n_{2}^{0}}\left(x_{2}\right)$, then all but one coefficient would vanish
$c_{n_{1}, n_{2}}^{0}=\delta_{n_{1}, n_{1}^{0}} \delta_{n_{2}, n_{2}^{0}} \quad ;$ given initial state
${ }^{2}$ The second particle might be bound to the target by a strong force that the projectile does not feel, for example.

Nransition Rate the two particles interact through some short-range potential, so that the hamiltonian becomes
$$
\begin{aligned}
H &=H_{0}+H^{\prime} \
H^{\prime} &=V\left(x_{1}, x_{2}\right)
\end{aligned}
$$
The Schrödinger equation then reads

物理代考|Model Problem 量子力学代写

物理代考

5.1 模型问题
考虑沿 $x$ 轴在一维中移动的两个粒子。粒子一可以像图 2.1 那样在一个大圆圈内自由移动,因此它满足周期性边界条件。它具有方程的特征函数和特征值。 (2.31) 和 (2.32)
$$
\开始{对齐}
\psi_{n}(x) &=\frac{1}{\sqrt{L}} e^{2 \pi i n x / L} & & ; n=0, \pm 1, \pm 2, \cdots \
E_{n} &=\frac{(2 \pi \hbar)^{2}}{2 m L^{2}} n^{2} & & ; \text { 粒子一 }
\end{对齐}
$$
本征函数满足等式中的正交性条件。 (2.33)。
第二个粒子被限制在一个长度更短的盒子中,如图 $3.1$ $(3.13)^{1}$
$\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad ; n=1,2,3, \cdots$
$$
E_{n}=\frac{(\pi \hbar)^{2}}{2 m L^{2}} n^{2}
$$
这两个粒子的起始哈密顿解和一般解是正交的。这里假设盒子是完全透明的,第一个粒子直接穿过它。 $^{2}$ $H_{0}=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2 }}+V_{\text {box }}\left(x_{2}\right)$ $\Psi_{0}\left(x_{1}, x_{2}, t\right)=\sum_{n_ {1}, n_{2}} c_{n_{1}, n_{2}}^{0}(t) \psi_{n_{1}}\left(x_{1}\right) e^{- i E_{n_{1}} t / \hbar} \psi_{n_{2}}\left(x_{2}\right) e^{-i E_{n_{2}} t / \hbar}$ 这个波函数满足薛定谔方程 $$ i \hbar \frac{\partial \Psi_{0}\left(x_{1}, x_{2}, t\right)}{\partial t}=H_{0} \ Psi_{0}\left(x_{1}, x_{2}, t\right) $$
为了一般性,我们在系数 $c_{n_{1}, n_{2}}^{0}(t)$ 中留下了时间依赖性,但让我们看看
$$
\开始{对齐}
&\sum_{n_{1}, n_{2}}\left[i \hbar \frac{d c_{n_{1}, n_{2}}^{0}(t)}{dt}+\left (E_{n_{1}}+E_{n_{2}}\right) c_{n_{1}, n_{2}}^{0}(t)\right] \psi_{n_{1}}\左(x_{1}\right) e^{-i E_{n_{1}} t / \hbar} \psi_{n_{2}}\left(x_{2}\right) e \
&=\sum_{n_{1}, n_{2}}\left(E_{n_{1}}+E_{n_{2}}\right) c_{n_{1}, n_{2}}^{ 0}(t) \psi_{n_{1}}\left(x_{1}\right) e^{-i E_{n_{1}} t / \hbar} \psi_{n_{2}}\left (x_{2}\right) e^{-i E_{n_{2}} t / \hbar}
\end{对齐}
$$
在取消常用项并使用特征函数的正交性来提取给定系数后,可以得到
$\frac{d c_{n_{1}, n_{2}}^{0}(t)}{d t}=0$
coef- (5.8) 平铺
$c_{n_{1}, n_{2}}^{0}(t)=c_{n_{1}, n_{2}}^{0}(0) \quad ;$ 与时间无关
如果我们从给定状态开始 $\psi_{n_{1}^{0}}\left(x_{1}\right) \psi_{n_{2}^{0}}\left(x_{2 }\right)$,那么除了一个系数之外的所有系数都会消失
$c_{n_{1}, n_{2}}^{0}=\delta_{n_{1}, n_{1}^{0}} \delta_{n_{2}, n_{2}^{0 }} \quad ;$ 给定初始状态
${ }^{2}$ 例如,第二个粒子可能会被射弹感觉不到的强大力绑定到目标。

Nransition Rate 两个粒子通过一些短程势能相互作用,因此哈密顿方程变为
$$
\开始{对齐}
H &=H_{0}+H^{\素数} \
H^{\prime} &=V\left(x_{1}, x_{2}\right)
\end{对齐}
$$
薛定谔方程然后读取

物理代考|Schr¨odinger Equation 量子力学代写

物理代考| Classical Optics量子力学代写 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

电磁学代考

物理代考服务:
物理Physics考试代考、留学生物理online exam代考、电磁学代考、热力学代考、相对论代考、电动力学代考、电磁学代考、分析力学代考、澳洲物理代考、北美物理考试代考、美国留学生物理final exam代考、加拿大物理midterm代考、澳洲物理online exam代考、英国物理online quiz代考等。

光学代考

光学(Optics),是物理学的分支,主要是研究光的现象、性质与应用,包括光与物质之间的相互作用、光学仪器的制作。光学通常研究红外线、紫外线及可见光的物理行为。因为光是电磁波,其它形式的电磁辐射,例如X射线、微波、电磁辐射及无线电波等等也具有类似光的特性。

大多数常见的光学现象都可以用经典电动力学理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型。几何光学的模型最为容易使用。

相对论代考

上至高压线,下至发电机,只要用到电的地方就有相对论效应存在!相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论的提出给物理学带来了革命性的变化,被誉为现代物理性最伟大的基础理论。

流体力学代考

流体力学力学的一个分支。 主要研究在各种力的作用下流体本身的状态,以及流体和固体壁面、流体流体之间、流体与其他运动形态之间的相互作用的力学分支。

随机过程代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程

Matlab代写

Related Posts

Leave a comment