Scroll Top
19th Ave New York, NY 95822, USA

物理代写| Contravariant and Covariant Components of a Vector 相对论代考

物理代写| Contravariant and Covariant Components of a Vector 相对论代考

物理代写

3.3 Contravariant and Covariant Components of a Vector
About the notation, we have used the same case for both kinds of components as that of the vector field. The $V^{i}$ are called “contravariant” components of a vector. $^{1}$ Similarly, $V_{i}$ are called “covariant” components of a vector. In fact, we follow a
${ }^{1}$ We generally omit the phrase “components of”, as the meaning is clear from the context even without that phrase.
42
3 Tensor Algebra
similar convention even for the basis vectors but as observed it is opposite to the components of a vector.

Let us now consider coordinate transformations. Consider another coordinate system $x^{\prime i}$. In the common region where $x^{i}$ and $x^{i i}$ are both defined and $x^{\prime i}$ are functions of $x^{j}$, that is $x^{\prime i}\left(x^{j}\right)$ and vice-versa. The only condition is that the Jacobian matrix of the transformation $\partial x^{\prime i} / \partial x^{j}$ should be non-singular so that the transformations are locally invertible – they form a valid coordinate system. Contravariant and covariant components of vectors and corresponding basis vectors transform differently under coordinate transformations.

Derivation 2 Find how the basis vectors change under the coordinate transformation $x^{i} \rightarrow x^{i i}=x^{i i}\left(x^{j}\right)$

Coordinate transformations change the components of a vector, but not the vector itself. Hence in the primed coordinates
$$
\mathbf{e}{i}^{\prime}:=\frac{\partial \mathbf{x}}{\partial x^{\prime i}}=\sum{j=1}^{n} \frac{\partial \mathbf{x}}{\partial x^{j}} \frac{\partial x^{j}}{\partial x^{\prime i}}=\sum_{j=1}^{n} \frac{\partial x^{j}}{\partial x^{\prime i}} \mathbf{e}{j} $$ To find how the other set of basis vectors, $\mathrm{e}^{i}:=\nabla x^{i}$, transform we notice that $$ \mathbf{e}^{i i} \cdot \mathrm{d} \mathbf{x}=\mathrm{d} x^{i i}=\sum{j=1}^{n} \frac{\partial x^{i i}}{\partial x^{j}} \mathrm{~d} x^{j}=\sum_{j=1}^{n} \frac{\partial x^{i i}}{\partial x^{j}} \mathbf{e}^{j} \cdot \mathrm{d} \mathbf{x}
$$
If this identity has to hold for any arbitrary $\mathrm{d} \mathbf{x}$, one should have
$$
\mathbf{e}^{i i}=\sum_{j=1}^{n} \frac{\partial x^{i i}}{\partial x^{j}} \mathbf{e}^{j} ; \quad \mathbf{e}^{i i} \cdot \mathbf{e}_{j}=\frac{\partial x^{\prime i}}{\partial x^{j}}
$$
Derivation 3 Find how the components of a vector $\mathbf{V}$ transform for the change of coordinate $x^{i} \rightarrow x^{i i}=x^{\prime i}\left(x^{j}\right)$.

Since a vector does not change in the new coordinates, only its components do,
$$
\mathbf{V}=\sum_{i=1}^{n} V^{i} \mathbf{e}{i}=\sum{i=1}^{n} V_{i} \mathbf{e}^{i}=\sum_{i=1}^{n} V^{i} \mathbf{e}{i}^{\prime}=\sum{i=1}^{n} V_{i}^{\prime} \mathbf{e}^{i i}
$$
Then using eqn. $(3.2 .7,3.2 .8,3.2 .5,3.3 .1 \& 3.3 .3)$ one can write
$$
\begin{aligned}
V^{i i} &=\mathbf{V} \cdot \mathbf{e}^{i i}=\sum_{k=1}^{n} V^{k} \mathbf{e}{k} \cdot \sum{j=1}^{n} \frac{\partial x^{i i}}{\partial x^{j}} \mathbf{e}^{j}=\sum_{j=1}^{n} \frac{\partial x^{i i}}{\partial x^{j}} V^{j} \
V_{i}^{\prime} &=\mathbf{V} \cdot \mathbf{e}{i}^{\prime}=\sum{k=1}^{n} V_{k} \mathbf{e}^{k} \cdot \sum_{j=1}^{n} \frac{\partial x^{j}}{\partial x^{\prime i}} \mathbf{e}{j}=\sum{j=1}^{n} \frac{\partial x^{j}}{\partial x^{\prime i}} V_{j}
\end{aligned}
$$
If we take $\mathbf{e}_{i}$ as the basis, then we see that the covariant components transform in the same way as this basis while the contravariant components transform with the inverse matrix. This is the historical reason for this nomenclature.

Physical quantities for one, do not change under coordinate transformations, but components of vectors and tensors do. That is why physical quantities appear as pairs of covariant and contravariant components summed over the same index, like in Eq. (3.3.4), because this procedure constructs coordinate independent quantities. This motivates us to consider the summation signs, in, e.g., Eq. (3.3.4), redundant. Therefore, whenever we see the same index twice in an expression, one in the subscript and one in the superscript, a summation over all allowed values of the index (normally 1 to $n$ or 0 to 3 for space-time coordinates) is implied, unless explicitly specified otherwise. This is called Einstein’s summation convention, a very useful shorthand, which some people jokingly say is Einstein’s only contribution to mathematics!

For example, using the summation convention one can succintly write the transformation properties of the covariant and contravariant components as,
$$
V^{\prime i}=\frac{\partial x^{i i}}{\partial x^{j}} V^{j} ; \quad V_{i}^{\prime}=\frac{\partial x^{j}}{\partial x^{\prime i}} V_{j}
$$
The summation convention is used in the rest of this book, unless, otherwise specified.

物理代写| Contravariant and Covariant Components of a Vector 狭义相对论代考

物理代考

3.3 向量的逆变和协变分量
关于符号,我们对两种分量都使用了与向量场相同的情况。 $V^{i}$ 被称为向量的“逆变”分量。 $^{1}$ 类似地,$V_{i}$ 被称为向量的“协变”分量。事实上,我们遵循一个
${ }^{1}$ 我们通常会省略短语“components of”,因为即使没有该短语,其含义也可以从上下文中清楚地看出。
42
3 张量代数
即使对于基向量也有类似的约定,但正如观察到的,它与向量的分量相反。

现在让我们考虑坐标变换。考虑另一个坐标系 $x^{\prime i}$。在 $x^{i}$ 和 $x^{ii}$ 都被定义并且 $x^{\prime i}$ 是 $x^{j}$ 的函数的公共区域中,即 $x^{ \prime i}\left(x^{j}\right)$ 反之亦然。唯一的条件是变换 $\partial x^{\prime i} / \partial x^{j}$ 的雅可比矩阵应该是非奇异的,以便变换是局部可逆的——它们形成一个有效的坐标系。向量的逆变分量和协变分量以及对应的基向量在坐标变换下变换不同。

推导2 求坐标变换下基向量如何变化 $x^{i} \rightarrow x^{i i}=x^{i i}\left(x^{j}\right)$

坐标变换会改变向量的分量,但不会改变向量本身。因此在素坐标
$$
\mathbf{e}{i}^{\prime}:=\frac{\partial \mathbf{x}}{\partial x^{\prime i}}=\sum{j=1}^{n} \frac{\partial \mathbf{x}}{\partial x^{j}} \frac{\partial x^{j}}{\partial x^{\prime i}}=\sum_{j=1} ^{n} \frac{\partial x^{j}}{\partial x^{\prime i}} \mathbf{e}{j} $$ 为了找出另一组基向量 $\mathrm{e}^{i}:=\nabla x^{i}$ 是如何变换的,我们注意到 $$ \mathbf{e}^{ii} \cdot \mathrm{d} \mathbf{x}=\mathrm{d} x^{ii}=\sum{j=1}^{n} \frac{\partial x ^{ii}}{\partial x^{j}} \mathrm{~d} x^{j}=\sum_{j=1}^{n} \frac{\partial x^{ii}}{\部分 x^{j}} \mathbf{e}^{j} \cdot \mathrm{d} \mathbf{x}
$$
如果这个恒等式必须为任意 $\mathrm{d} \mathbf{x}$ 持有,则应该有
$$
\mathbf{e}^{ii}=\sum_{j=1}^{n} \frac{\partial x^{ii}}{\partial x^{j}} \mathbf{e}^{j} ; \quad \mathbf{e}^{i i} \cdot \mathbf{e}_{j}=\frac{\partial x^{\prime i}}{\partial x^{j}}
$$
推导 3 找出向量 $\mathbf{V}$ 的分量如何随着坐标的变化 $x^{i} \rightarrow x^{ii}=x^{\prime i}\left(x^{j }\右)$。

由于向量在新坐标中没有改变,只有它的分量会改变,
$$
\mathbf{V}=\sum_{i=1}^{n} V^{i} \mathbf{e}{i}=\sum{i=1}^{n} V_{i} \mathbf{ e}^{i}=\sum_{i=1}^{n} V^{i} \mathbf{e}{i}^{\prime}=\sum{i=1}^{n} V_ {i}^{\prime} \mathbf{e}^{ii}
$$
然后使用eqn。 $(3.2 .7,3.2 .8,3.2 .5,3.3 .1 \& 3.3 .3)$ 一个可以写
$$
\开始{对齐}
V^{ii} &=\mathbf{V} \cdot \mathbf{e}^{ii}=\sum_{k=1}^{n} V^{k} \mathbf{e}{k} \ cdot \sum{j=1}^{n} \frac{\partial x^{ii}}{\partial x^{j}} \mathbf{e}^{j}=\sum_{j=1}^ {n} \frac{\partial x^{ii}}{\partial x^{j}} V^{j} \
V_{i}^{\prime} &=\mathbf{V} \cdot \mathbf{e}{i}^{\prime}=\sum{k=1}^{n} V_{k} \mathbf {e}^{k} \cdot \sum_{j=1}^{n} \frac{\partial x^{j}}{\partial x^{\prime i}} \mathbf{e}{j }=\sum{j=1}^{n} \frac{\partial x^{j}}{\partial x^{\prime i}} V_{j}
\end{对齐}
$$
如果我们以$\mathbf{e}_{i}$ 为基,那么我们看到协变分量的变换方式与此基相同,而逆变分量随逆矩阵变换。这就是这种命名法的历史原因。

一个物理量在坐标变换下不会改变,但向量和张量的分量会改变。这就是为什么物理量显示为在同一索引上求和的成对的协变和逆变分量,就像在等式中一样。 (3.3.4),因为这个程序构造了坐标独立量。这促使我们考虑求和符号,例如,等式。 (3.3.4),多余的。因此,每当我们在一个表达式中两次看到相同的索引时,一个在下标中,一个在上标中,索引的所有允许值(通常为 1 到 $n$ 或 0 到 3 对于时空坐标)的总和是暗示,除非另有明确说明。这就是所谓的爱因斯坦求和约定,一种非常有用的速记,有人戏称这是爱因斯坦对数学的唯一贡献!

例如,使用求和约定可以简洁地将协变和逆变分量的变换属性写为:
$$
V^{\prime i}=\frac{\partial x^{i i}}{\partial x^{j}} V^{j} ; \quad V_{i}^{\prime}=\frac{\partial x^{j}}{\partial x^{\prime i}} V_{j}
$$
除非另有说明,否则本书其余部分均使用求和约定。

物理代考|Schr¨odinger Equation 量子力学代写

物理代考Gravity and Curvature of Space-Time 代写 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

电磁学代考

物理代考服务:
物理Physics考试代考、留学生物理online exam代考、电磁学代考、热力学代考、相对论代考、电动力学代考、电磁学代考、分析力学代考、澳洲物理代考、北美物理考试代考、美国留学生物理final exam代考、加拿大物理midterm代考、澳洲物理online exam代考、英国物理online quiz代考等。

光学代考

光学(Optics),是物理学的分支,主要是研究光的现象、性质与应用,包括光与物质之间的相互作用、光学仪器的制作。光学通常研究红外线、紫外线及可见光的物理行为。因为光是电磁波,其它形式的电磁辐射,例如X射线、微波、电磁辐射及无线电波等等也具有类似光的特性。

大多数常见的光学现象都可以用经典电动力学理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型。几何光学的模型最为容易使用。

相对论代考

上至高压线,下至发电机,只要用到电的地方就有相对论效应存在!相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论的提出给物理学带来了革命性的变化,被誉为现代物理性最伟大的基础理论。

流体力学代考

流体力学力学的一个分支。 主要研究在各种力的作用下流体本身的状态,以及流体和固体壁面、流体流体之间、流体与其他运动形态之间的相互作用的力学分支。

随机过程代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程

Matlab代写

Related Posts

Leave a comment