如果你也在 怎样代写宇宙学Cosmology这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。宇宙学Cosmology是玄学的一个分支,涉及宇宙的性质。宇宙学一词于1656年在托马斯-布朗特的Glossographia中首次使用,1731年由德国哲学家克里斯蒂安-沃尔夫在拉丁文的Cosmologia Generalis中使用。宗教或神话宇宙学是基于神话、宗教和神秘文学以及创造神话和末世论传统的信仰体系。在天文学科学中,它关注的是对宇宙年表的研究。
宇宙学Cosmology物理宇宙学是研究可观察到的宇宙的起源,它的大尺度结构和动力学,以及宇宙的最终命运,包括支配这些领域的科学规律。它由科学家,如天文学家和物理学家,以及哲学家,如形而上学家、物理学哲学家、空间和时间哲学家进行研究。由于与哲学的这种共同范围,物理宇宙学的理论可能包括科学和非科学的命题,并可能取决于无法检验的假设。物理宇宙学是天文学的一个分支,关注的是整个宇宙。现代物理宇宙学以大爆炸理论为主导,该理论试图将观测天文学和粒子物理学结合起来;更具体地说,大爆炸的标准参数化与暗物质和暗能量,被称为Lambda-CDM模型。
my-assignmentexpert™ 宇宙学Cosmology作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的宇宙学Cosmology作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此宇宙学Cosmology作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在物理physics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的物理physics代写服务。我们的专家在宇宙学Cosmology代写方面经验极为丰富,各种宇宙学Cosmology相关的作业也就用不着 说。
我们提供的宇宙学Cosmology及其相关学科的代写,服务范围广, 其中包括但不限于:
物理代写|宇宙学作业代写Cosmology代考|Three puzzles
As we saw in Section $1.6$ and $1.8$, the observed Type Ia supernova redshiftdistance relation and measurements of the ages of the oldest stars are consistent with a vanishing spatial curvature parameter $\Omega_{K}$, though a nonvanishing curvature can be accommodated by changing $\Omega_{M}$. Including data from the cosmic microwave background temperature fluctuations, discussed in Section 7.2, favors $\Omega_{K}=0$. Although there is still room for a small non-zero $\Omega_{K}$, it seems quite safe to conclude from these observations that $\left|\Omega_{K}\right|<1$. But $\Omega_{K}$ is just the present value of the dimensionless time dependent curvature parameter $-K / a^{2} H^{2}=-K / \dot{a}^{2}$, with $K$ constant. From the time the temperature dropped to about $10^{4} \mathrm{~K}$ until near the present, $a(t)$ has been increasing as $t^{2 / 3}$, so $|K| / \dot{a}^{2}$ has also been increasing as $t^{2 / 3} \propto T^{-1}$. Thus, if $\left|\Omega_{K}\right|<1$, then at $10^{4} \mathrm{~K}$ the curvature parameter $|K| / \dot{a}^{2}$ could not have been greater than about $10^{-4}$. Earlier, $a(t)$ was increasing as $t^{1 / 2}$, so $|K| / \dot{a}^{2}$ was increasing as $t \propto T^{-2}$. In order for $|K| / \dot{a}^{2}$ at $10^{4} \mathrm{~K}$ to be no greater than about $10^{-4}$, it is necessary that $|K| / \dot{a}^{2}$ was at most about $10^{-16}$ at the temperature $T \approx 10^{10} \mathrm{~K}$ of electron-positron annihilation (roughly, the beginning of the period of neutron-proton conversion that results in the observed helium abundance), and even smaller at earlier times. ${ }^{5}$ This is not a paradox-there is no reason why the curvature should not have been very small-but it is the sort of thing physicists would like to explain if we can.
What Guth realized was that during inflation $\dot{a} / a$ would have been roughly constant, so $|K| / a^{2} H^{2}$ would have been decreasing more or less like $a^{-2}$. So to understand why space was so flat at the beginning of the present big bang it is not necessary to make any arbitrary assumptions; if the radiation-dominated big bang was preceded by a sufficient period of inflation, it would necessarily have started with negligible curvature.
物理代写|宇宙学作业代写Cosmology代考|Slow-roll inflation
In Guth’s original work, inflation was conceived to be due to a delayed first-order phase transition, in which a scalar field was initially trapped in a local minimum of some potential, and then leaked through the potential barrier and rolled toward a true minimum of the potential. It was soon realized ${ }^{1}$ that this idea does not work, because of what has come to be called the graceful exit problem. The transition from the supercooled initial “false vacuum” phase to the lower energy “true vacuum” phase could not have occurred everywhere simultaneously, but here and there in small bubbles of true vacuum, which rapidly expanded into the background of false vacuum, in which the scalar field would have been still trapped in its local minimum, ${ }^{2}$ like water droplets forming in supercooled water vapor. The trouble is that the latent heat released in the phase transition would have wound up in the bubble walls, leaving the interiors of the bubbles essentially empty, so that the only places where there would be energy that could grow into the present contents of the universe would be highly inhomogeneous and anisotropic. At first Guth thought the bubbles in inflationary cosmologies would have merged, leading to our present more-or-less homogeneous universe, but this could not have happened; because the background false-vacuum space continued to inflate, the bubble walls would have moved too fast away from each other ever to have coalesced.
物理代写|宇宙学作业代写Cosmology代考|Chaotic inflation, eternal inflation
It was soon realized that some “new inflation” models actually entail an endless production of inflating bubbles. ${ }^{1}$ This has come to be called “eternal inflation.” ${ }^{2}$ To take one example, if the inflaton scalar field at a given point in space once had a value of unstable equilibrium (like at the top of a potential hill) then the probability that the inflaton field was still at this value after a time $t$ decreased as $\exp (-\gamma t)$. However, the volume in which the scalar field had this value was meanwhile increasing as $\exp (+3 H t)$, so as long as $3 H>\gamma$ the volume of space that still undergoes inflation eternally increases exponentially.
We have been assuming that the scalar field is initially independent of position, aside from small perturbations, about which more in Chapter 10. Soon after the introduction of new inflation, the possibilities of inflationary theory were greatly expanded and improved when Linde ${ }^{3}$ proposed the theory of “chaotic inflation,” in which initially one or more scalar fields varied in a random way with position. Here and there one would have found patches of space in which an inflaton field took a nearly uniform value at which the potential satisfied the slow-roll conditions (4.2.10) and (4.2.13), as for instance a value substantially greater than the Planck mass for a power-law potential. Inflation will then have occured in such a patch, provided the patch was initially sufficiently large.
It is necessary to require that the uniform patch be sufficiently large, because the scalar field Lagrangian density given by Eq. (B.63) contains a term involving spatial derivatives, which for a non-uniform scalar field contributes a term $-a^{-2} \nabla^{2} \varphi$ on the left-hand side of Eq. (4.2.1). In order for this term not to interfere with the slow-roll analysis of the previous section, we need the scale $L$ of proper distances over which $\varphi$ takes a roughly constant initial value to be greater than $\left|\varphi / V^{\prime}(\varphi)\right|^{1 / 2}$. For instance, for the potential $V(\varphi)=g \varphi^{4}$, this condition gives
$$
L \gg \frac{1}{2 \sqrt{g}|\varphi|}=\left(\frac{1}{g(4 \pi G)^{2} \varphi^{4}}\right)^{1 / 2}(\sqrt{\pi G} \varphi) \sqrt{4 \pi G}
$$
The classical field theory condition (4.2.15) makes the first factor much larger than unity, while the slow-roll condition (4.2.10) makes the second factor also much larger than unity, so the patch size must be very much greater than the third factor, which is essentially the Planck length. Such relatively large uniform patches may be quite rare, but that is no argument against this hypothesis, because life can only arise in big bangs that stem from such patches.
宇宙学代考
物理代写|宇宙学作业代写COSMOLOGY代考|THREE PUZZLES
正如我们在章节中看到的1.6和1.8,观测到的 Ia 型超新星红移距离关系和对最古老恒星年龄的测量与消失的空间曲率参数一致Ωķ,尽管可以通过改变Ω米. 包括来自 7.2 节讨论的宇宙微波背景温度波动的数据,有利于Ωķ=0. 虽然还有小非零的空间Ωķ,从这些观察中得出的结论似乎很安全|Ωķ|<1. 但Ωķ只是无量纲时间相关曲率参数的现值−ķ/一种2H2=−ķ/一种˙2, 和ķ持续的。从气温下降到大约104 ķ直到现在,一种(吨)一直在增加吨2/3, 所以|ķ|/一种˙2也一直在增加吨2/3∝吨−1. 因此,如果|Ωķ|<1,然后在104 ķ曲率参数|ķ|/一种˙2不可能大于约10−4. 早些时候,一种(吨)随着吨1/2, 所以|ķ|/一种˙2随着吨∝吨−2. 为了|ķ|/一种˙2在104 ķ不大于约10−4, 有必要|ķ|/一种˙2最多是关于10−16在温度吨≈1010 ķ正电子湮没的r这在GHl是,吨H和b和G一世nn一世nG这F吨H和p和r一世这d这Fn和在吨r这n−pr这吨这nC这n在和rs一世这n吨H一种吨r和s在l吨s一世n吨H和这bs和r在和dH和l一世在米一种b在nd一种nC和,在早期甚至更小。5这不是一个悖论——曲率没有理由不应该非常小——但如果可以的话,这是物理学家想要解释的事情。
Guth 意识到,在通货膨胀期间一种˙/一种本来是大致恒定的,所以|ķ|/一种2H2会或多或少地减少一种−2. 因此,要理解为什么在当前大爆炸开始时空间如此平坦,没有必要做出任何武断的假设;如果以辐射为主的大爆炸之前有足够长的膨胀期,那么它必然以可忽略不计的曲率开始。
物理代写|宇宙学作业代写COSMOLOGY代考|SLOW-ROLL INFLATION
在 Guth 的原始工作中,暴胀被认为是由于延迟的一阶相变,其中标量场最初被困在某个势能的局部最小值中,然后通过势垒泄漏并滚向真正的最小值潜力。很快就意识到了1这个想法行不通,因为所谓的优雅退出问题。从过冷的初始“假真空”阶段到较低能量的“真真空”阶段的转变不可能在任何地方同时发生,而是到处都是真真空的小气泡,它们迅速膨胀到假真空的背景中,其中标量场仍会被困在其局部最小值中,2就像过冷水蒸气中形成的水滴一样。问题在于,相变中释放的潜热会聚集在气泡壁中,使气泡内部基本上是空的,因此只有能量可以增长到宇宙当前内容的地方将是高度不均匀和各向异性的。起初,古斯认为暴胀宇宙学中的气泡会合并,导致我们现在或多或少同质的宇宙,但这不可能发生。因为背景的假真空空间继续膨胀,气泡墙彼此之间移动得太快而无法合并。
物理代写|宇宙学作业代写COSMOLOGY代考|CHAOTIC INFLATION, ETERNAL INFLATION
很快人们就意识到,一些“新通胀”模型实际上会导致不断产生膨胀的泡沫。1这被称为“永恒的通货膨胀”。2举个例子,如果在空间中给定点的暴胀子标量场曾经有一个不稳定平衡的值l一世ķ和一种吨吨H和吨这p这F一种p这吨和n吨一世一种lH一世ll那么暴胀场在一段时间后仍处于该值的概率吨减少为经验(−C吨). 然而,标量场具有该值的体积同时随着经验(+3H吨), 所以只要3H>C仍在经历膨胀的空间体积永远呈指数增长。
我们一直假设标量场最初是与位置无关的,除了小的扰动,第 10 章对此有更多的讨论。在引入新暴胀后不久,暴胀理论的可能性得到了极大的扩展和改进。3提出了“混沌膨胀”理论,其中最初一个或多个标量场随位置以随机方式变化。在这里和那里,人们会发现一些空间块,其中暴胀场具有几乎一致的值,在该值处,势能满足慢滚条件4.2.10和4.2.13,例如,对于幂律势,一个值远大于普朗克质量。如果该补丁最初足够大,那么通货膨胀将发生在这样的补丁中。
有必要要求均匀贴片足够大,因为由等式给出的标量场拉格朗日密度。乙.63包含一个涉及空间导数的项,它对于非均匀标量场贡献一个项−一种−2∇2披在等式的左侧。4.2.1. 为了使这个术语不干扰上一节的慢滚动分析,我们需要规模大号适当的距离披取一个大致恒定的初始值大于|披/在′(披)|1/2. 例如,对于潜在的在(披)=G披4, 这个条件给出
大号≫12G|披|=(1G(4圆周率G)2披4)1/2(圆周率G披)4圆周率G
经典场论条件4.2.15使第一个因素远大于统一,而慢滚条件4.2.10使得第二个因素也比统一大得多,所以补丁大小必须比第三个因素大得多,第三个因素本质上是普朗克长度。这种相对较大的均匀斑块可能非常罕见,但这并不是反对这一假设的论据,因为生命只能在源自这些斑块的大爆炸中出现。
物理代写|宇宙学作业代写Cosmology代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
电磁学代考
物理代考服务:
物理Physics考试代考、留学生物理online exam代考、电磁学代考、热力学代考、相对论代考、电动力学代考、电磁学代考、分析力学代考、澳洲物理代考、北美物理考试代考、美国留学生物理final exam代考、加拿大物理midterm代考、澳洲物理online exam代考、英国物理online quiz代考等。
光学代考
光学(Optics),是物理学的分支,主要是研究光的现象、性质与应用,包括光与物质之间的相互作用、光学仪器的制作。光学通常研究红外线、紫外线及可见光的物理行为。因为光是电磁波,其它形式的电磁辐射,例如X射线、微波、电磁辐射及无线电波等等也具有类似光的特性。
大多数常见的光学现象都可以用经典电动力学理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型。几何光学的模型最为容易使用。
相对论代考
上至高压线,下至发电机,只要用到电的地方就有相对论效应存在!相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论的提出给物理学带来了革命性的变化,被誉为现代物理性最伟大的基础理论。
流体力学代考
流体力学是力学的一个分支。 主要研究在各种力的作用下流体本身的状态,以及流体和固体壁面、流体和流体之间、流体与其他运动形态之间的相互作用的力学分支。
随机过程代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。