Scroll Top
19th Ave New York, NY 95822, USA

数学代写|运筹学代写operational research代考|Impact of Changes in Demand Characteristics

如果你也在 怎样代写运筹学operational research这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。运筹学operational research通常简称为OR,是一门研究开发和应用先进的分析方法来改善决策的学科。它有时被认为是数学科学的一个子领域。管理科学一词有时被用作同义词。

运筹学operational research采用了其他数学科学的技术,如建模、统计和优化,为复杂的决策问题找到最佳或接近最佳的解决方案。由于强调实际应用,运筹学与许多其他学科有重叠之处,特别是工业工程。运筹学通常关注的是确定一些现实世界目标的极端值:最大(利润、绩效或收益)或最小(损失、风险或成本)。运筹学起源于二战前的军事工作,它的技术已经发展到涉及各种行业的问题。

my-assignmentexpert™运筹学operational research作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的运筹学operational research作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此运筹学operational research作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在运筹学operational research代写方面经验极为丰富,各种运筹学operational research相关的作业也就用不着 说。

我们提供的运筹学operational research及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|运筹学代写operational research代考|Impact of Changes in Demand Characteristics

数学代写|运筹学代写operational research代考|Changes in Demand Variability

To discuss how the perception of demand variability behaves as true variability changes, we refer to the data from Kocabıyıkoğlu et al. (2015). Although studying changes in demand was not the main focus of their study, their experimental design required participants to make newsvendor decisions under four different demand distributions with the same mean $(E[D]=40)$, but different variances (see Table $2.1$ for the specific demand distributions used, and the corresponding variances). They manipulated change in demand via a within-subject design, and the participants worked with each demand distribution for 10 rounds. They considered both high profit margin $(p=120, c=30)$ and low profit margin $(p=120, c=90)$ settings; which was controlled with a between-subject design. 26 participants were assigned to the high profit margin condition, while there were 29 participants in the low profit margin condition. The average actual order decisions observed in Kocabiyıkoğlu et al. (2015), as well as the expected profit maximizing quantities, denoted by $x$ and $x^{*}$ respectively, are provided in Table 2.2.
Consistent with the rest of the behavioral operational research literature, the pull-to-center effect was observed in Kocabıyıkoğlu et al.’s (2015) experiments; the observed orders were greater than the corresponding normative quantities under the low margin scenario, and smaller than the theoretical benchmarks under the high margin scenario.

By using the data from Kocabiyıkoğlu et al.’s (2015) study, current work examined the existence of overprecision by calculating the overprecision parameters, $(1-\beta)$. Through this new analysis (see Fig. 2.1), we observed that the overprecision parameters were uniformly positive, indicating their participants perceived demand to be less variable than it actually is. This is in line with Ren and Croson’s (2013) results, which suggest overprecision as one of the drivers of the pull-to-center pattern.
The parameters provided in Fig. $2.1$ suggest the decision makers’ degree of overprecision did not stay constant across demand sizes. Rather, the higher overprecision parameters observed at lower variability levels when the profit margin was high suggest that the decision makers’ tendency to perceive a more stable demand (i.e. perceive demand to be less variable than it actually is) became weaker when demand was more variable. The opposite pattern emerged in the low margin scenario. That is, overprecision parameters were lower at lower variability levels (for example, $(1-\beta)=0.62$ when demand was distributed Uniform(30, $50)$ and $\operatorname{Var}(D)=33.33$, while $(1-\beta)=0.72$ under demand distribution Uniform $(10,70)$, with corresponding variance $\operatorname{Var}(D)=300.00$ ) implying that the decision makers’ perception that demand is more stable (i.e. less variable than it is in reality) became stronger when demand was more variable.

The results discussed above suggest that the strength of decision makers’ tendency to perceive demand to be less variable than in reality is context dependent. Such an induced stability bias may have significant ramifications for demand forecasts and order decisions and needs to be taken into account when designing systems/procedures to support and enhance decision making. Furthermore, decision makers’ perception of demand vis-à-vis changes in variability emerges as a pattern that should be given particular importance in both high risk markets that yield low margins, as well as in low risk markets that yield high margins, since the difference between the true and perceived demand propagates widely in such settings.

数学代写|运筹学代写operational research代考|Changes in Demand Size

In other ongoing work, Kocabıyıkoğlu et al. (2018) investigate the impact of demand size on newsvendor decisions with a controlled laboratory study. In particular, they present an experiment which consists of 40 rounds, where every 10 rounds, the demand distribution changed in a manner that shifted the mean while preserving the variance (see Table $2.3$ for the specific demand distributions used with corresponding mean values). The selling price was set as $p=120 ; 47$ participants worked with $c=30$ (i.e. the high margin setting), while 46 participants were told the ordering cost was $c=90$ (i.e. the low margin setting).Table $2.4$ provides the average actual orders observed, $x$, and normative quantities, $x^{*}$, under both profit margin scenarios.

Before we discuss how the perception of demand size behaves with respect to variance-preserving but mean-shifting changes in the distribution, we note from Table $2.4$ that the participants in this latter study exhibited the pull-to-center pattern. In particular, they ordered more units than the expected profit-maximizing quantity in the low margin setting (suggesting they perceived demand to be larger than it actually is), and fewer units than the normative level in the high margin setting (suggesting they perceived demand to be smaller than its true form). To measure the strength of this bias and how it behaves with respect to changes in demand size, we calculate the demand size parameters $\delta$ for order decisions and Fig. $2.2$ presents this analysis.

Figure $2.2$ presents consistently negative $\delta$ values in the high margin setting, and positive $\delta$ values in the low margin setting, confirming that participant’s perceived demand to be smaller than it actually is when the profit margin was high, with the opposite tendency influencing decisions in the low margin setting. Furthermore, this difference between the perceived and true demand sizes was not constant across demand distributions. In particular, in the low margin setting, the tendency to perceive demand to be larger than it actually is weakened at higher mean demand levels. For example, the demand size parameter $\delta$ was $25.04$ when demand was distributed Uniform $(0,80)$ and $E[D]=40$, while it was $13.73$ when demand was distributed $\operatorname{Uniform}(30,110)$ and $E[D]=70$. In the high margin setting, the strength of the tendency to perceive demand to be smaller than it actually is also varied across demand sizes; specifically, it became stronger at higher mean demand levels. For example, the demand size parameter was $\delta=-9.61$ when demand was distributed Uniform $(0,80)$ and $E[D]=40$, while it was$19.92$ under Uniform $(30,110)$, with $E[D]=70$.

The analysis above on the context-dependency of this induced scale bias is in line with the findings on demand variability discussed previously. Although the ‘misperception’ of demand size gets weaker as the market grows for low profit margin products, in high profit margin industries, this bias gets stronger, and would potentially impede building market share by leading to consistent under-ordering, and consequently, higher numbers of turned-away customers.

数学代写|运筹学代写operational research代考|Impact of Changes in Demand Characteristics

运筹学代写

数学代写|运筹学代写OPERATIONAL RESEARCH代考|CHANGES IN DEMAND VARIABILITY

为了讨论需求变化的感知如何表现为真正的变化变化,我们参考了 Kocabıyıkoğlu 等人的数据。2015. 尽管研究需求变化不是他们研究的主要重点,但他们的实验设计要求参与者在具有相同平均值的四种不同需求分布下做出报摊决策(和[D]=40), 但不同的方差s和和吨一种bl和$2.1$F这r吨H和sp和C一世F一世Cd和米一种ndd一世s吨r一世b在吨一世这ns在s和d,一种nd吨H和C这rr和sp这nd一世nG在一种r一世一种nC和s. 他们通过主题内设计操纵需求变化,参与者对每个需求分布进行 10 轮工作。他们认为高利润率(p=120,C=30)和低利润率(p=120,C=90)设置;这是通过主题间设计控制的。26 名参与者被分配到高利润率条件,而有 29 名参与者被分配到低利润率条件。在 Kocabiyıkoğlu 等人中观察到的平均实际订单决策。2015,以及期望的利润最大化数量,表示为X和X∗分别在表 2.2 中提供。
与其他行为运筹学文献一致,在 Kocabıyıkoğlu 等人的研究中观察到拉到中心效应2015实验;观察到的订单在低利润率情景下大于相应的规范数量,在高利润率情景下小于理论基准。

通过使用 Kocabiyıkoğlu 等人的数据2015研究,目前的工作通过计算超精度参数来检查超精度的存在,(1−b). 通过这个新的分析s和和F一世G.2.1,我们观察到超精度参数一致为正,表明他们的参与者认为需求比实际变化小。这符合 Ren 和 Croson 的2013结果表明,过度精确是拉到中心模式的驱动因素之一。
图中提供的参数2.1表明决策者的过度精确程度在需求规模中并没有保持不变。相反,当利润率较高时,在较低可变性水平上观察到的较高超精度参数表明决策者倾向于感知更稳定的需求一世.和.p和rC和一世在和d和米一种nd吨这b和l和ss在一种r一世一种bl和吨H一种n一世吨一种C吨在一种ll是一世s当需求变化更大时,它变得更弱。在低利润率情景中出现了相反的模式。也就是说,在较低的可变性水平下,超精密度参数较低F这r和X一种米pl和,$(1−b=0.62在H和nd和米一种nd在一种sd一世s吨r一世b在吨和d在n一世F这r米(30,50)一种nd\ 操作员名称 {Var}D=33.33,在H一世l和1−b=0.72在nd和rd和米一种ndd一世s吨r一世b在吨一世这n在n一世F这r米10,70,在一世吨HC这rr和sp这nd一世nG在一种r一世一种nC和\ 操作员名称 {Var}D=300.00$ ) 暗示决策者认为需求更加稳定一世.和.l和ss在一种r一世一种bl和吨H一种n一世吨一世s一世nr和一种l一世吨是当需求变化更大时变得更强。

上面讨论的结果表明,决策者认为需求比实际变化更小的倾向的强度取决于环境。这种诱发的稳定性偏差可能对需求预测和订单决策产生重大影响,在设计系统/程序以支持和加强决策时需要考虑到这一点。此外,决策者对需求相对于可变性变化的看法作为一种模式出现,在产生低利润的高风险市场和产生高利润的低风险市场中都应该特别重视,因为真实需求与感知需求之间的差异在此类环境中广泛传播。

数学代写|运筹学代写OPERATIONAL RESEARCH代考|CHANGES IN DEMAND SIZE

在其他正在进行的工作中,Kocabıyıkoğlu 等人。2018通过受控的实验室研究调查需求规模对报刊商决策的影响。特别是,他们提出了一个由 40 轮组成的实验,其中每 10 轮,需求分布以一种在保持方差的同时移动均值的方式发生变化s和和吨一种bl和$2.3$F这r吨H和sp和C一世F一世Cd和米一种ndd一世s吨r一世b在吨一世这ns在s和d在一世吨HC这rr和sp这nd一世nG米和一种n在一种l在和s. 售价设定为p=120;47参与者与C=30 一世.和.吨H和H一世GH米一种rG一世ns和吨吨一世nG,而 46 名参与者被告知订购成本是C=90 一世.和.吨H和l这在米一种rG一世ns和吨吨一世nG。桌子2.4提供观察到的平均实际订单,X, 和标准量,X∗,在两种利润率情景下。

在我们讨论需求规模的感知在分布中保持方差但均值移动的变化方面如何表现之前,我们从表中注意到2.4后一项研究的参与者表现出拉到中心的模式。特别是,他们在低利润环境下订购的数量超过了预期的利润最大化数量s在GG和s吨一世nG吨H和是p和rC和一世在和dd和米一种nd吨这b和l一种rG和r吨H一种n一世吨一种C吨在一种ll是一世s,并且比高边距设置中的规范水平更少的单位s在GG和s吨一世nG吨H和是p和rC和一世在和dd和米一种nd吨这b和s米一种ll和r吨H一种n一世吨s吨r在和F这r米. 为了衡量这种偏差的强度以及它在需求规模变化方面的表现,我们计算了需求规模参数d用于订单决策和图。2.2提出了这一分析。

数字2.2呈现出一贯的负面d高边距设置中的值,并且为正d低利润率设置中的值,确认参与者的感知需求小于利润率高时的实际需求,而相反的趋势会影响低利润率设置中的决策。此外,感知需求规模和真实需求规模之间的差异在需求分布中并不是恒定的。特别是,在低边际环境中,认为需求大于实际需求的趋势在平均需求水平较高时减弱。例如,需求规模参数d曾是25.04需求分配时 统一(0,80)和和[D]=40, 虽然它是13.73当需求被分配时制服⁡(30,110)和和[D]=70. 在高边际设置中,认为需求小于实际需求的趋势强度也因需求规模而异;具体来说,它在更高的平均需求水平上变得更强。例如,需求规模参数是d=−9.61需求分配时 统一(0,80)和和[D]=40, 虽然它是19.92在制服下(30,110), 和和[D]=70.

上面对这种诱发的规模偏差的背景依赖性的分析与之前讨论的需求可变性的结果一致。尽管随着市场对低利润率产品的增长,对需求规模的“误解”变得越来越弱,但在高利润率行业中,这种偏见变得更加强烈,并可能通过导致持续的订购不足而阻碍建立市场份额,从而导致更高的被拒的顾客数量。

数学代写|运筹学代写operational research代考

数学代写|运筹学代写operational research代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment