如果你也在 怎样代写运筹学operational research这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。运筹学operational research通常简称为OR,是一门研究开发和应用先进的分析方法来改善决策的学科。它有时被认为是数学科学的一个子领域。管理科学一词有时被用作同义词。
运筹学operational research采用了其他数学科学的技术,如建模、统计和优化,为复杂的决策问题找到最佳或接近最佳的解决方案。由于强调实际应用,运筹学与许多其他学科有重叠之处,特别是工业工程。运筹学通常关注的是确定一些现实世界目标的极端值:最大(利润、绩效或收益)或最小(损失、风险或成本)。运筹学起源于二战前的军事工作,它的技术已经发展到涉及各种行业的问题。
my-assignmentexpert™运筹学operational research作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的运筹学operational research作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此运筹学operational research作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在运筹学operational research代写方面经验极为丰富,各种运筹学operational research相关的作业也就用不着 说。
我们提供的运筹学operational research及其相关学科的代写,服务范围广, 其中包括但不限于:
数学代写|运筹学代写operational research代考|Behavioral Limitations in Probability Assessment and Use in Decision Aiding
In the context of facilitated decision support a ‘good’ probability assessment is one that accurately represents a decision-maker’s opinion about a quantity of interest, regardless of how accurately that opinion reflects reality Garthwaite et al. 2005. Ideally a decision-maker’s judgments should be well-calibrated against, or at least take into account, available data; but ultimately if a decision-maker chooses to hold a minority opinion then that is their choice, and one that must be respected by decision support. It has long been recognized that it is difficult to obtain good probability assessments in decision analysis (Spetzler and Stael von Holstein 1975; von Winterfeldt and Edwards 1986). The real question is whether these difficulties can be reduced or eliminated, and whether alternative non-probabilistic approaches do any better.
A core finding in psychological research over the past fifty years is that many kinds of judgments are subject to systematic distortions. This is the heuristics and biases research program brought to prominence by Tversky and Kahneman (1974), and reviewed in Gilovich et al. (2002) and Kahneman and Egan (2011). Many of the original heuristics availability, representativeness, anchoring and adjustment relate to probability assessment, and these have been substantially added to over the years. Montibeller and von Winterfeldt $(2015 \mathrm{~b})$ provide a recent, comprehensive summary of biases as they relate to decision and risk analysis, grouping them into cognitive and motivational groups of biases.
Cognitive biases arise when a mental calculation leads to an assessment of probability that is systematically different from accepted normative standards. An ‘easy’ example is one that violates the conjunction rule; but assessments that are insensitive to changing base rates would also be considered cognitively biased. Among other effects, cognitive biases can induce decision-makers to allocate similar probabilities to all events equalizing bias, to focus on a much-reduced set of futures states myopia, to be sensitive to scaling, to ignore base rates, to inadequately update judgments in light of new information conservatism, and to judge the sum of mutually exclusive events to be different to the probability of the union of those events sub/super-additivity.
数学代写|运筹学代写operational research代考|Partial Compensation in a Conventional Framework
Although not straightforward, many biases in probability assessment can be reduced or avoided by using debiasing tools and procedures, allowing the analyst and decision-maker to remain in a conventional probability-based framework. This section briefly reviews developments in this area. The main messages emerging from this literature are that (a) biases, while persistent, can often be reduced; (b) tools are primarily either cognitive strategies designed to help the decision-maker to confront his or her biases, or visual aids facilitating understanding and interpretation of probability concepts; (c) prescriptive decision analysis has in fact done quite well with respect to bias reduction, with many debiasing tools constituting, in our view, accepted best practice in MCDA.
The success of the heuristics and biases program means that its main message of flawed human judgment has garnered a great deal of attention, rebuttals much less so (e.g. Johnson and Bruce 2001; Kynn 2008). Since these are relevant to behavioral OR, we summarize them here. The most important message is that biases are often found using framings deliberately chosen to induce them, and that more-or-less simple changes have been found to reduce the severity of these biases. These include using frequencies rather than probabilities, using negative framings, providing base rates, and making nested probabilistic structures explicit. Environments favorable to good assessment are summarized in Johnson and Bruce (2001) and Shanteau (1992): they include those aided by expertise, training and relevant feedback, motivation, a naturalistic rather than experimental setting, and prediction tasks rather than memory retrieval tasks. All of these are either common features of decision problems (e.g. naturalistic settings, prediction tasks) or would generally be considered good problem structuring practice e.g. feedback, training, inclusion of relevant stakeholders representing experts and interest groups.
数学代写|运筹学代写OPERATIONAL RESEARCH代考|Robustness to Scenarios and Antifragility
Many discussions refer to the need for scenarios to be diverse but ‘plausible’. As an aid to decision-making, scenarios should also capture significant potential impacts gains or losses, as discussed for example by Derbyshire and Wright $(2014)$ and Derbyshire $(2017)$, for purposes of more formal decision analysis.
The earliest attempts to integrate scenario planning with MCDA Goodwin and Wright 2009 in effect carry out a formal deterministic MCDA multi-attribute value function model analysis within each scenario, resulting in an overall evaluation of the consequences of each policy action in terms of an aggregate value under the scenario. Goodwin and Wright $(2009)$ do not clearly discuss resolving conflicts which may still arise when comparisons are made of alternatives across scenarios, although the tenor of the discussion hints at a desire for some form of robustness. A clearly robust solution would be one which has maximum aggregate value or nearly so under all scenarios, and such a solution may actively be sought, but may seldom be achievable.
Montibeller and co-workers (e.g. Montibeller et al. 2006; Ram et al. 2010) formalize robustness in a similar context to Goodwin and Wright by applying a max-min approach, i.e. by selecting the policy or course of action, which maximizes the minimum aggregate value across scenarios. The use of max-min concepts as a ‘worst-case’ analysis is quite widely spread across the literature, but apart from a reference to two-person zero-sum games, which is more of an analogy than a realistic model of most decision-making situations, does not have a fundamental theoretical basis cf. French et al. 2009, p. 345, and must be viewed at best as a heuristic. Its use must be viewed with some caution as, for example, if the max-min solution is only slightly better on the minimum aggregate value but much worse under other scenarios, the approach may be very difficult to justify.
运筹学代写
数学代写|运筹学代写OPERATIONAL RESEARCH代考|BEHAVIORAL LIMITATIONS IN PROBABILITY ASSESSMENT AND USE IN DECISION AIDING
在促进决策支持的背景下,“良好”的概率评估是准确代表决策者对感兴趣数量的意见的评估,无论该意见如何准确地反映现实 Garthwaite 等人。2005. 理想情况下,决策者的判断应根据可用数据进行良好校准,或至少考虑到可用数据;但最终,如果决策者选择持有少数意见,那么这就是他们的选择,并且必须得到决策支持的尊重。人们早就认识到,在决策分析中很难获得好的概率评估小号p和吨和l和r一种nd小号吨一种和l在这nH这ls吨和一世n1975;在这n在一世n吨和rF和ld吨一种nd和d在一种rds1986. 真正的问题是这些困难是否可以减少或消除,以及替代的非概率方法是否做得更好。
过去五十年来心理学研究的一个核心发现是,许多判断都受到系统性的扭曲。这是 Tversky 和 Kahneman 提出的启发式和偏见研究计划1974,并在 Gilovich 等人中进行了审查。2002和卡尼曼和伊根2011. 许多原始启发式方法的可用性、代表性、锚定和调整与概率评估有关,这些年来已大量添加。蒙蒂贝勒和冯·温特费尔特(2015 b)提供与决策和风险分析相关的偏见的最新全面总结,将它们分为认知和动机偏见组。
当心理计算导致对概率的评估与公认的规范标准系统性地不同时,就会出现认知偏差。一个“简单”的例子是违反连词规则的例子;但对基准利率变化不敏感的评估也将被视为存在认知偏差。除其他影响外,认知偏差会导致决策者将相似的概率分配给均衡偏差的所有事件,专注于一组大大减少的未来状态近视,对缩放敏感,忽略基准利率,不充分地更新判断根据新的信息保守主义,判断互斥事件的总和与这些事件的子/超可加性并集的概率不同。
数学代写|运筹学代写OPERATIONAL RESEARCH代考|PARTIAL COMPENSATION IN A CONVENTIONAL FRAMEWORK
虽然不是直截了当的,但可以通过使用去偏工具和程序来减少或避免概率评估中的许多偏差,从而使分析师和决策者能够保持在传统的基于概率的框架中。本节简要回顾了该领域的发展。这些文献中出现的主要信息是一种偏见虽然持续存在,但通常可以减少;b工具主要是旨在帮助决策者面对偏见的认知策略,或者是有助于理解和解释概率概念的视觉辅助工具;C事实上,规范性决策分析在减少偏见方面做得很好,在我们看来,许多去偏见工具构成了 MCDA 中公认的最佳实践。
启发式和偏见计划的成功意味着它的主要信息是有缺陷的人类判断已经引起了广泛的关注,而反驳则更少和.G.Ĵ这Hns这n一种nd乙r在C和2001;ķ是nn2008. 由于这些与行为 OR 相关,因此我们在此对其进行总结。最重要的信息是,经常使用故意选择的框架来发现偏见,并且发现或多或少的简单变化可以降低这些偏见的严重性。这些包括使用频率而不是概率、使用负框架、提供基本比率以及明确嵌套的概率结构。Johnson 和 Bruce 总结了有利于良好评估的环境2001和尚托1992:它们包括那些由专业知识、培训和相关反馈、动机、自然主义而非实验性环境以及预测任务而非记忆检索任务辅助的任务。所有这些都是决策问题的共同特征和.G.n一种吨在r一种l一世s吨一世Cs和吨吨一世nGs,pr和d一世C吨一世这n吨一种sķs或者通常被认为是良好的问题结构化实践,例如反馈、培训、包括代表专家和利益集团的相关利益相关者。
数学代写|运筹学代写OPERATIONAL RESEARCH代考|ROBUSTNESS TO SCENARIOS AND ANTIFRAGILITY
许多讨论都提到了情景多样化但“合理”的必要性。作为决策的辅助手段,情景还应捕捉重大的潜在影响收益或损失,例如 Derbyshire 和 Wright 所讨论的(2014)和德比郡(2017),用于更正式的决策分析。
最早将情景规划与 MCDA Goodwin 和 Wright 相结合的尝试 2009 年实际上在每个情景中进行了正式的确定性 MCDA 多属性价值函数模型分析,从而根据总价值对每个政策行动的后果进行整体评估情景下。古德温和赖特(2009)尽管讨论的基调暗示了对某种形式的稳健性的渴望,但没有明确讨论解决在比较不同情景的替代方案时仍可能出现的冲突。一个明显稳健的解决方案将是在所有情况下都具有最大总价值或几乎如此的解决方案,并且可以积极寻求这样的解决方案,但可能很少能够实现。
蒙贝勒和同事和.G.米这n吨一世b和ll和r和吨一种l.2006;R一种米和吨一种l.2010在与 Goodwin 和 Wright 类似的背景下,通过应用最大最小方法(即通过选择策略或行动方案,使跨场景的最小总价值最大化)来形式化稳健性。使用最大最小概念作为“最坏情况”分析在文献中广泛传播,但除了对两人零和游戏的引用之外,这更像是一个类比而不是大多数决策的现实模型制造情况,没有基本的理论基础。法国等人。2009 年,第 345,并且充其量只能被视为一种启发式方法。必须谨慎看待它的使用,例如,如果 max-min 解决方案仅在最小聚合值上稍微好一点,但在其他情况下更差,则该方法可能很难证明是合理的。
数学代写|运筹学代写operational research代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。