19th Ave New York, NY 95822, USA

数学代写|图像处理代写Digital image processing代考|CSC520 Exploring 3-D Space

my-assignmentexpert™提供最专业的一站式服务：Essay代写，Dissertation代写，Assignment代写，Paper代写，Proposal代写，Proposal代写，Literature Review代写，Online Course，Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务，拥有各个专业的博硕教师团队帮您代写，免费修改及辅导，保证成果完成的效率和质量。同时有多家检测平台帐号，包括Turnitin高级账户，检测论文不会留痕，写好后检测修改，放心可靠，经得起任何考验！

数学代写|图像处理代写Digital image processing代考|Exploring 3-D Space

In images, 3-D scenes are projected on a 2-D image plane. Thus the depth information is lost and special imaging techniques are required to retrieve the topography of surfaces or volumetric images. In recent years, a large variety of range imaging and volumetric imaging techniques have been developed. Therefore image processing techniques are also applied to depth maps and volumetric images.

Figure $1.3$ shows the reconstruction of a press form for microstructures that has been imaged by a special type of confocal microscopy [163]. The form is made out of PMMA, a semi-transparent plastic ma- terial with a smooth surface, so that it is almost invisible in standard microscopy. The form has narrow, $500 \mu \mathrm{m}$ deep rectangular holes.

In order to make the transparent material visible, a statistically distributed pattern is projected through the microscope optics onto the focal plane. This pattern only appears sharp on parts that lie in the focal plane. The pattern gets more blurred with increasing distance from the focal plane. In the focus series shown in Fig. 1.3, it can be seen that first the patterns of the material in the bottom of the holes become sharp (Fig. 1.3a), then after moving the object away from the optics, the final image focuses at the surface of the form (Fig. 1.3c). The depth of the surface can be reconstructed by searching for the position of maximum contrast for each pixel in the focus series (Fig. 1.3d).

Figure $1.4$ shows the depth map of a plant leaf that has been imaged with another modern optical 3-D measuring technique known as white-light interferometry or coherency radar. It is an interferometric technique that uses light with a coherency length of only a few wavelengths. Thus interference patterns occur only with very short path differences in the interferometer. This effect can be utilized to measure distances with an accuracy in the order of a wavelength of light used.

Magnetic resonance imaging $(M R)$ is an example of a modern volumetric imaging technique, which we can use to look into the interior of 3-D objects. In contrast to $\mathrm{x}$-ray tomography, it can distinguish different tissues such as gray and white brain tissues. Magnetic resonance imaging is a very flexible technique. Depending on the parameters used, quite different material properties can be visualized (Fig. 1.5).

数学代写|图像处理代写Digital image processing代考|Exploring Dynamic Processes

The exploration of dynamic processes is possible by analyzing image sequences. The enormous potential of this technique is illustrated with a number of examples in this section.

In botany, a central topic is the study of the growth of plants and the mechanisms controlling growth processes. Figure $1.6$ a shows a Rizinus plant leaf from which a map of the growth rate (percent increase of area per unit time) has been determined by a time-lapse image sequence where about every minute an image was taken. This new technique for growth rate measurements is sensitive enough for area-resolved measurements of the diurnal cycle.

Figure $1.6 \mathrm{c}$ shows an image sequence (from left to right) of a growing corn root. The gray scale in the image indicates the growth rate, which is largest close to the tip of the root.

In science, images are often taken at the limit of the technically possible. Thus they are often plagued by high noise levels. Figure $1.7$ shows fluorescence-labeled motor proteins that a moving on a plate covered with myosin molecules in a so-called motility assay. Such an assay is used to study the molecular mechanisms of muscle cells. Despite the high noise level, the motion of the filaments is apparent. However, automatic motion determination with such noisy image sequences is a demanding task that requires sophisticated image sequence analysis techniques.
The next example is taken from oceanography. The small-scale processes that take place in the vicinity of the ocean surface are very difficult to measure because of undulation of the surface by waves. Moreover, point measurements make it impossible to infer the 2-D structure of the waves at the water surface. Figure $1.8$ shows a space-time image of short wind waves. The vertical coordinate is a spatial coordinate in the wind direction and the horizontal coordinate the time. By a special illumination technique based on the shape from shading paradigm (Section 8.5.3), the along-wind slope of the waves has been made visible. In such a spatiotemporal image, motion is directly visible by the inclination The larger the angle to horizontal axis, the faster the object is moving. The larger the angle to horizontal axis, the faster the object is moving. The image sequence gives a direct insight into the complex nonlinear dynamics of wind waves. A fast moving large wave modulates the mospeed (bound waves), but mostly they are significantly slower showing large modulations in the phase speed and amplitude.

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。