# 物理代写|粒子物理代写Particle Physics代考|PGPH11099 Tensor decomposition. Irreducible tensors

my-assignmentexpert™提供最专业的一站式服务：Essay代写，Dissertation代写，Assignment代写，Paper代写，Proposal代写，Proposal代写，Literature Review代写，Online Course，Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务，拥有各个专业的博硕教师团队帮您代写，免费修改及辅导，保证成果完成的效率和质量。同时有多家检测平台帐号，包括Turnitin高级账户，检测论文不会留痕，写好后检测修改，放心可靠，经得起任何考验！

## 物理代写|粒子物理代写Particle Physics代考|Tensor decomposition. Irreducible tensors.

Tensor decomposition. Irreducible tensors. Consider a two-index tensor $T_{i j}$. It has nine components. It can be decomposed into a symmetric and traceless part $S$, an antisymmetric part $A$ and the trace $T_{k k}$, with five, three and one independent components, respectively, as follows
\begin{aligned} T_{i j} &=\frac{1}{2}\left(T_{i j}+T_{j i}\right)-\frac{1}{3} \delta_{i j} T_{k k}+\frac{1}{2}\left(T_{i j}-T_{j i}\right)+\frac{1}{3} \delta_{i j} T_{k k} \ & \equiv S_{i j}+A_{i j}+\frac{1}{3} \delta_{i j} T_{k k} \end{aligned}
The new objects $S, A$ and $T_{k k}$ have the following properties: (a) The trace $T_{k k}$ of $T$ is a scalar under $O$ (3). Indeed, $T_{k k}^{\prime}=R_{k l} R_{k m} T_{l m}=\left(R^T R\right){l m} T{l m}=\delta_{l m} T_{l m}=T_{m m}$.
(b) The $A_{i j}$ transform linearly among themselves under $O(3)$ and form a two-index antisymmetric tensor, which is equivalent to a pseudo-vector.

Indeed, defining $\mathcal{A}i \equiv \epsilon{i j k} A_{j k}$, and making use of the properties of the $\epsilon$-symbol, we verify that $\mathcal{A}i^{\prime}=(\operatorname{det} R) R{i k} \mathcal{A}k$. (c) The five independent quantities $S{i j} \equiv(1 / 2)\left(T_{i j}+T_{j i}\right)-(1 / 3) \delta_{i j} T_{k k}$, form a symmetric traceless two-index tensor. ${ }^{13}$

Thus, under the action of the rotation group the five components of $S$, the three components of $A$ and the one component $T_{k k}$ transform independently. We say that the generic two-index tensor decomposes into a sum of three irreducible tensors of ranks 2,1 and 0 respectively. We write
$$\mathbf{3} \otimes \mathbf{3} \cong \mathbf{5} \oplus \mathbf{3} \oplus \mathbf{1}$$
and, as will become clear soon, this is an example of the general reduction formula (5.58).

The same procedure applies to the decomposition of higher tensor quantities. The operations of symmetrisation, anti symmetrisation and tracing give seven-, nine-, etc. dimensional irreducible representations of the rotation group.

## 物理代写|粒子物理代写Particle Physics代考|The Lie algebra of SO(3)

The Lie algebra of $\mathbf{S O}(3)$. The group elements of $S O(3)$ depend on three independent variables, the three rotation angles and therefore the Lie algebra $\mathfrak{c o}_{(3)}$ has three generators. On the other hand we know from the Cartan classification that there exists only one independent three-dimensional Lie algebra, the one we studied in association with the group $S U(2)$. It follows that we have an isomorphism $\mathfrak{f u}(\mathbf{2}) \cong \mathfrak{f}(\mathbf{0})$. In Problem 5.3, we ask the reader to verify this by explicit calculation. This is another example of the statement that two different groups may have identical Lie algebras.
We have studied the representations of this algebra and have found that they are labelled by an index $j$ which can take integer, or half-integer, values. Which of these representations will give, by exponentiation, representations of $S O(3)$ ? The group $S O(3)$ is characterised by the fact that a rotation by $2 \pi$ is identical to no rotation. This property should be preserved by all its representations. This means that the rotation matrix in any representation should satisfy $\exp {2 \mathrm{i} \pi \boldsymbol{n} \cdot \boldsymbol{J}}=\mathbf{1}$. Applied to rotations around the $z$-axis, it implies that $J_3$ should have integer eigenvalues. Thus,of all representations of the algebra, only the ones corresponding to integer $j$ yield by exponentiation representations of $S O(3)$. In order to obtain this result we have to use the global property of $S O(3)$ and identify a rotation of $2 \pi$ with the identity.

## 物理代写|粒子物理代写粒子物理学代考|张量分解。不可约张量

\begin{aligned} T_{i j} &=\frac{1}{2}\left(T_{i j}+T_{j i}\right)-\frac{1}{3} \delta_{i j} T_{k k}+\frac{1}{2}\left(T_{i j}-T_{j i}\right)+\frac{1}{3} \delta_{i j} T_{k k} \ & \equiv S_{i j}+A_{i j}+\frac{1}{3} \delta_{i j} T_{k k} \end{aligned}

(b) $A_{i j}$在$O(3)$下彼此之间线性变换，形成一个双指标的反对称张量，它等价于一个伪向量 确实，通过定义$\mathcal{A}i \equiv \epsilon{i j k} A_{j k}$并利用$\epsilon$ -符号的属性，我们验证了$\mathcal{A}i^{\prime}=(\operatorname{det} R) R{i k} \mathcal{A}k$。(c)五个独立的量$S{i j} \equiv(1 / 2)\left(T_{i j}+T_{j i}\right)-(1 / 3) \delta_{i j} T_{k k}$，形成对称无迹双指标张量。${ }^{13}$

$$\mathbf{3} \otimes \mathbf{3} \cong \mathbf{5} \oplus \mathbf{3} \oplus \mathbf{1}$$
，很快就会清楚，这是一般约简公式(5.58)的一个例子

## 物理代写|粒子物理代写粒子物理学代考| SO(3)的李代数

$\mathbf{S O}(3)$的李代数。$S O(3)$的群元素依赖于三个自变量，三个旋转角度，因此李代数$\mathfrak{c o}_{(3)}$有三个生成器。另一方面，我们从Cartan分类中知道，只有一个独立的三维李代数，就是我们和$S U(2)$群一起研究的那个。由此可见，我们有一个同构$\mathfrak{f u}(\mathbf{2}) \cong \mathfrak{f}(\mathbf{0})$。在问题5.3中，我们要求读者通过显式计算来验证这一点。这是另一个例子说明两个不同的群可能有相同的李代数。我们研究了这个代数的表示，并发现它们由一个索引$j$标记，该索引可以接受整数或半整数值。通过求幂，哪一种表示法可以表示$S O(3)$ ?组$S O(3)$的特点是$2 \pi$的旋转等同于不旋转。这一财产应由其所有代表加以保全。这意味着任何表示形式中的旋转矩阵都应该满足$\exp {2 \mathrm{i} \pi \boldsymbol{n} \cdot \boldsymbol{J}}=\mathbf{1}$。应用于围绕$z$轴的旋转，它意味着$J_3$应该具有整型特征值。因此，在代数的所有表示中，只有整数$j$对应的表示通过$S O(3)$的幂表示产生。为了得到这个结果，我们必须使用$S O(3)$的全局属性，并用标识符标识$2 \pi$的旋转

## Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。