Scroll Top
19th Ave New York, NY 95822, USA

数学代写|信息论代写Information Theory代考|An Example of the Entropy Formulation of the Second Law

如果你也在 怎样代写信息论information theory 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。信息论information theory的一个关键衡量标准是熵。熵量化了随机变量的值或随机过程的结果中所涉及的不确定性的数量。例如,确定一个公平的抛硬币的结果(有两个同样可能的结果)比确定一个掷骰子的结果(有六个同样可能的结果)提供的信息要少(熵值较低)。

信息论information theory基本课题的应用包括源编码/数据压缩(如ZIP文件),以及信道编码/错误检测和纠正(如DSL)。它的影响对于旅行者号深空任务的成功、光盘的发明、移动电话的可行性和互联网的发展都至关重要。该理论在其他领域也有应用,包括统计推理、密码学、神经生物学、感知、语言学、分子代码的进化和功能(生物信息学)、热物理、分子动力学、量子计算、黑洞、信息检索、情报收集、剽窃检测、模式识别、异常检测甚至艺术创作。

my-assignmentexpert信息论information theory代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert, 最高质量的信息论information theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此信息论information theory作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在澳洲代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的澳洲代写服务。我们的专家在信息论information theory代写方面经验极为丰富,各种信息论information theory相关的作业也就用不着 说。

我们提供的信息论information theory及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|信息论代写Information Theory代考|An Example of the Entropy Formulation of the Second Law

数学代写|信息论代写Information Theory代考|An Example of the Entropy Formulation of the Second Law

Consider a more general process of mixing. We start with an isolated system with $c$-compartments. Initially, in compartment $i$, there are $N_i$ particles in volume $V_i$. The total volume and the number of particles are:
$$
\begin{aligned}
& V=\sum_{i=1}^c V_i \
& N=\sum_{i=1}^c N_i
\end{aligned}
$$
From Shannon’s theorem (see Sect. 2.11.1 of Ben-Naim [4]) we know that the distribution that maximizes the SMI is the uniform distribution. We also know that the uniform distribution of locations is the equilibrium distribution of any ideal gas system. Thus, we know that initially the locational distribution in each compartment is uniform and equal to $1 / V_i$. We also know that the equilibrium locational distribution after removing all the partitions will be $1 / V$, i.e. uniform probability of finding a particle in any location in the entire volume $V$.

We now show that when we remove all the partitions in the system, the entropy must increase (note that there are no interactions among the particles and the process is carried out at constant $N, V, E$ which means an isolated system).

We start with the Sackur-Tetrode equation for the entropy of ideal gas (see Sect. 5.2 of Ben-Naim [4]).
$$
S(T, V, N)=k_B N \ln \left(\frac{V}{N} \alpha\right)+\frac{5}{2} k_B N
$$
In Eq. 4.20 we collected all terms which do not change in the process into the constant $\alpha$. Since both the initial and the final states in the process are equilibrium states, we can write the entropy of the initial and the final states as:
$$
S(\text { initial })=\sum_{i=1}^c k_B N_i \ln \left(\frac{V_i}{N_i} \alpha\right)+\frac{5}{2} k_B N_i
$$

$$
S(\text { final })=k_B N \ln \left(\frac{V}{N} \alpha\right)+\frac{5}{2} k_B N
$$
We now define the mole fraction and the volume fraction by:
$$
y_i=\frac{V_i}{V}, x_i=\frac{N_i}{N}
$$
With these two fractions we can write the entropy-change in the process as:
$$
\begin{aligned}
\Delta S & =S(\text { final })-S(\text { initial }) \
& =k_B N \sum_{i=1}^c x_i \ln \frac{x_i}{y_i} \geq 0
\end{aligned}
$$

数学代写|信息论代写Information Theory代考|An Example of Gibbs Energy-Formulationn of the Second Law

For a system at constant temperature, pressure, and total number of particles we have the following formulation of the Second Law:
The Gibbs energy of an equilibrium system is minimum over all possible Gibbs energies of constrained equilibrium states of the same system having the same temperature, pressure, and total number of particles.
In the previous section we discussed a spontaneous process of mixing in an isolated system. Here we discuss a spontaneous process in a constant temperature and pressure. If we start with a constrained equilibrium system and remove the constraints keeping $T, P, N$ constant the Gibbs energy of the system must decrease.

We discuss a special process which is of importance in the theory of proteinfolding.

Suppose we have a molecule which can be in $c$-states (the analogue of $c$ compartments). Suppose also that in the presence of an inhibitor (the analogue of the partitions in Fig. 4.1) we can prepare a constrained equilibrium system with $N_i$ molecules in state $i$. An example would be a protein having a discrete number of conformation.

If we remove the inhibitor (the analogue of removal of the partition in the mixing process of Fig. 4.1) the system will change to a new equilibrium state. If we keep the temperature, the pressure and the total number of molecules fixed then the Gibbs energy of the system will decrease in this system. Specifically, suppose that we initially prepare the system with $N_i$ molecules in state $i$, such that $\sum N_i=N$. If there is an inhibitor that inhibits the conversion between states, the system will stay in this constrained equilibrium state. The distribution of molecules in the different states can be represented by the vector $\left(x_1, x_2, \ldots, x_c\right)$ where $x_1=N_i / N$ is the mole fraction of molecules in the state $i$.

If we remove the inhibitor, the system will attain a new equilibrium state. One can prove that there exists a single equilibrium vector $\left(x_1^{e q}, x_2^{e q}, \ldots, x_c^{e q}\right)$ such that the Gibbs energy change in the process will be:
$$
\Delta G=k_B T N \sum_{i=1}^c x_i \ln \frac{x_i^{e q}}{x_i} \leq 0
$$
This is again the Kullback-Leibler inequality for the “distance” between the initial and the final vectors $\left(x_1, \ldots, x_c\right)$ and $\left(x_1^{e q}, \ldots, x_c^{e q}\right)$, respectively.

数学代写|信息论代写Information Theory代考|An Example of the Entropy Formulation of the Second Law

信息论代写

数学代写|信息论代写INFORMATION THEORY代考|AN EXAMPLE OF THE ENTROPY FORMULATION OF THE SECOND LAW

考虑一个更一般的混合过程。我们从一个孤立的系统开始 $c$-隔间。最初,在隔间 $i$ ,有 $N_i$ 体积颗粒 $V_i$.总体积和粒子数为:
$$
V=\sum_{i=1}^c V_i \quad N=\sum_{i=1}^c N_i
$$
从香农定理 seeSect. 2.11.1ofBen – Naim [4]我们知道最大化 SMI 的分布是均匀分布。我们还知道,位置均匀分布是任何理想气体系统的平衡分布。因此,我们 知道最初每个隔间的位置分布是均匀的并且等于 $1 / V_i$. 我们还知道,去除所有分区后的均衡位置分布将是 $1 / V$ ,即在整个体积的任何位置找到粒子的均匀概率 $V$.
我们现在表明,当我们删除系统中的所有分区时,樀必须增加
notethattherearenointeractionsamongtheparticlesandtheprocessiscarriedoutatconstant $\$ N, V, E \$$ whichmeansanisolatedsystem.
我们从理想气体酤的 Sackur-Tetrode 方程开始seeSect. 5.2ofBen – Naim [4].
$$
S(T, V, N)=k_B N \ln \left(\frac{V}{N} \alpha\right)+\frac{5}{2} k_B N
$$
在等式中。 4.20 我们收集了所有在过程中不发生变化的项为常量 $\alpha$. 由于过程中的初始状态和最终状态都是平衡状态,我们可以将初始状态和最終状态的樀写为:
$$
\begin{gathered}
S(\text { initial })=\sum_{i=1}^c k_B N_i \ln \left(\frac{V_i}{N_i} \alpha\right)+\frac{5}{2} k_B N_i \
S \text { ( final })=k_B N \ln \left(\frac{V}{N} \alpha\right)+\frac{5}{2} k_B N
\end{gathered}
$$
我们现在通过以下方式定义摩尔分数和体积分数:
$$
y_i=\frac{V_i}{V}, x_i=\frac{N_i}{N}
$$
通过这两个分数,我们可以将过程中的樀变写为:
$$
\Delta S=S(\text { final })-S(\text { initial }) \quad=k_B N \sum_{i=1}^c x_i \ln \frac{x_i}{y_i} \geq 0
$$

数学代写|信息论代写INFORMATION THEORY代考|AN EXAMPLE OF GIBBS ENERGY-FORMULATIONN OF THE SECOND LAW

对于处于恒定温度、压力和粒子总数的系统,我们有第二定律的以下公式:
平衡系统的吉布斯能量在具有相同温度的同一系统的约束平衡状态的所有可能吉布斯能量中最小、压力和粒子总数。
在上一节中,我们讨论了孤立系统中的自发混合过程。在这里,我们讨论在恒定温度和压力下的自发过程。如果我们从一个受约束的均衡系统开 始并移除约束保持 $T, P, N$ 常数系统的吉布斯能量必须减少。
我们讨论了一个在蛋白质折叠理论中很重要的特殊过程。
假设我们有一个分子可以在c-状态theanalogueof \$c\$compartments. 还假设在存在抑制剂的情况下theanalogueofthepartitionsinFig. 4.1 我们可以准备一个约束平衡系统 $N_i$ 处于状态的分子 $i$.一个例子是具有离散数量构象的蛋白质。
如果我们去除抑制剂theanalogueofremovalofthepartitioninthemixingprocessofFig.4.1系统将改变到一个新的平衡状态。如果我们保持 温度、压力和分子总数固定,那么该系统的吉布斯能量将降低。具体来说,假设我们最初准备系统 $N_i$ 处于状态的分子 $i$, 这样 $\sum N_i=N$. 如果存在 抑制状态之间转换的抑制剂,系统将保持在这种受约束的平衡状态。分子在不同状态下的分布可以用向量表示 $\left(x_1, x_2, \ldots, x_c\right)$ 在哪里 $x_1=N_i / N$ 是状态下分子的摩尔分数 $i$.
如果我们去除抑制剂,系统将达到一个新的平衡状态。可以证明存在一个单一的平衡向量 $\left(x_1^{e q}, x_2^{e q}, \ldots, x_c^{e q}\right)$ 这样过程中的吉布斯能量变化将是:
$$
\Delta G=k_B T N \sum_{i=1}^c x_i \ln \frac{x_i^{e q}}{x_i} \leq 0
$$
这又是初始向量和最终向量之间“距离”的 Kullback-Leibler 不等式 $\left(x_1, \ldots, x_c\right)$ 和 $\left(x_1^{e q}, \ldots, x_c^{e q}\right)$ ,分别。

数学代写|信息论代写Information Theory代考

数学代写|信息论代写Information Theory代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment