Scroll Top
19th Ave New York, NY 95822, USA

数学代写|最优化作业代写optimization theory代考|PROBLEM FORMULATION

如果你也在 怎样代写最优化Optimization Theory 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。最优化Optimization Theory是致力于解决优化问题的数学分支。 优化问题是我们想要最小化或最大化函数值的数学函数。 这些类型的问题在计算机科学和应用数学中大量存在。

最优化Optimization Theory每个优化问题都包含三个组成部分:目标函数、决策变量和约束。 当人们谈论制定优化问题时,它意味着将“现实世界”问题转化为包含这三个组成部分的数学方程和变量。目标函数,通常表示为 f 或 z,反映要最大化或最小化的单个量。交通领域的例子包括“最小化拥堵”、“最大化安全”、“最大化可达性”、“最小化成本”、“最大化路面质量”、“最小化排放”、“最大化收入”等等。

最优化Optimization Theory代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的最优化Optimization Theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此最优化Optimization Theory作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|最优化作业代写optimization theory代考|PROBLEM FORMULATION

数学代写|最优化作业代写optimization theory代考|PROBLEM FORMULATION

The axiom “A problem well put is a problem half solved” may be a slight exaggeration, but its intent is nonetheless appropriate. In this section, we
shall review the important aspects of problem formulation, and introduce the notation and nomenclature to be used in the following chapters.
The formulation of an optimal control problem requires:
A mathematical description (or model) of the process to be controlled.
A statement of the physical constraints.
Specification of a performance criterion.
The Mathematical Model
A nontrivial part of any control problem is modeling the process. The objective is to obtain the simplest mathematical description that adequately predicts the response of the physical system to all anticipated inputs. Our discussion will be restricted to systems described by ordinary differential equations (in state variable form). $\dagger$ Thus, if
$$
x_1(t), x_2(t), \ldots, x_n(t)
$$
are the state variables (or simply the states) of the process at time $t$, and
$$
u_1(t), u_2(t), \ldots, u_m(t)
$$
are control inputs to the process at time $t$, then the system may be described by $n$ first-order differential equations
$$
\begin{aligned}
& \dot{x}_1(t)=a_1\left(x_1(t), x_2(t), \ldots, x_n(t), u_1(t), u_2(t), \ldots, u_m(t), t\right) \
& \dot{x}_2(t)=a_2\left(x_1(t), x_2(t), \ldots, x_n(t), u_1(t), u_2(t), \ldots, u_m(t), t\right) \
& \quad \cdot \
& \cdot \
& \dot{x}_n(t)=a_n\left(x_1(t), x_2(t), \ldots, x_n(t), u_1(t), u_2(t), \ldots, u_m(t), t\right) .
\end{aligned}
$$

数学代写|最优化作业代写optimization theory代考|The Performance Measure

In order to evaluate the performance of a system quantitatively, the designer selects a performance measure. An optimal control is defined as one that minimizes (or maximizes) the performance measure. In certain cases the problem statement may clearly indicate what to select for a performance measure, whereas in other problems the selection is a subjective matter. For example, the statement, “Transfer the system from point A to point B as quickly as possible,” clearly indicates that elapsed time is the performance measure to be minimized. On the other hand, the statement, “Maintain the position and velocity of the system near zero with a small expenditure of control energy,” does not instantly suggest a unique performance measure. In such problems the designer may be required to try several performance measures before selecting one which yields what he considers to be optimal performance. We shall discuss the selection of a performance measure in more detail in Chapter 2.
Example 1.1-3. Let us return to the automobile problem begun in Example 1.1-1. The state equations and physical constraints have been defined; now we turn to the selection of a performance measure. Suppose the objective is to make the car reach point $e$ as quickly as possible; then the performance measure $J$ is given by
$$
J=t_f-t_0
$$
In all that follows it will be assumed that the performance of a system is evaluated by a measure of the form
$$
J=h\left(\mathbf{x}\left(t_f\right), t_f\right)+\int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$
where $t_0$ and $t_f$ are the initial and final time; $h$ and $g$ are scalar functions. $t_f$ may be specified or “free,” depending on the problem statement.
Starting from the initial state $\mathbf{x}\left(t_0\right)=\mathbf{x}_0$ and applying a control signal $\mathbf{u}(t)$, for $t \in\left[t_0, t_f\right]$, causes a system to follow some state trajectory; the performance measure assigns a unique real number to each trajectory of the system.
With the background material we have accumulated it is now possible to present an explicit statement of “the optimal control problem.”

数学代写|最优化作业代写optimization theory代考|PROBLEM FORMULATION

最优化代写

数学代写|最优化作业代写optimization theory代考|PROBLEM FORMULATION

“问题提得好就是问题解决了一半”这句格言可能有点夸张,但它的意图仍然是恰当的。在本节中,我们将回顾问题表述的重要方面,并介绍在接下来的章节中使用的符号和命名法。
最优控制问题的表述需要:
待控制过程的数学描述(或模型)。
物理约束的声明。
性能标准的说明。
数学模型
任何控制问题的一个重要部分是过程建模。目标是获得最简单的数学描述,以充分预测物理系统对所有预期输入的响应。我们的讨论将限于用常微分方程(状态变量形式)描述的系统。$\dagger$因此,如果
$$
x_1(t), x_2(t), \ldots, x_n(t)
$$
是时间$t$时过程的状态变量(或简单地说是状态),而
$$
u_1(t), u_2(t), \ldots, u_m(t)
$$
是时间$t$时过程的控制输入,那么系统可以用$n$一阶微分方程
$$
\begin{aligned}
& \dot{x}_1(t)=a_1\left(x_1(t), x_2(t), \ldots, x_n(t), u_1(t), u_2(t), \ldots, u_m(t), t\right) \
& \dot{x}_2(t)=a_2\left(x_1(t), x_2(t), \ldots, x_n(t), u_1(t), u_2(t), \ldots, u_m(t), t\right) \
& \quad \cdot \
& \cdot \
& \dot{x}_n(t)=a_n\left(x_1(t), x_2(t), \ldots, x_n(t), u_1(t), u_2(t), \ldots, u_m(t), t\right) .
\end{aligned}
$$
来描述。

数学代写|最优化作业代写optimization theory代考|The Performance Measure

为了定量地评价系统的性能,设计者选择了一种性能度量。最优控制被定义为使性能度量最小化(或最大化)的控制。在某些情况下,问题陈述可以清楚地指出为性能度量选择什么,而在其他问题中,选择是一个主观问题。例如,语句“尽可能快地将系统从A点转移到B点”清楚地表明,运行时间是要最小化的性能度量。另一方面,“以很小的控制能量消耗保持系统的位置和速度接近于零”的说法并不能立即提出一种独特的性能衡量标准。在这类问题中,设计师可能需要尝试几种性能度量,然后选择一种他认为最优的性能。我们将在第2章更详细地讨论绩效衡量标准的选择。
例1.1-3。让我们回到例1.1-1中开始的汽车问题。定义了状态方程和物理约束;现在我们转向绩效衡量标准的选择。假设目标是使汽车尽可能快地到达$e$点;那么性能度量$J$是由
$$
J=t_f-t_0
$$
在接下来的所有内容中,我们假设系统的性能是由如下形式的度量来评估的
$$
J=h\left(\mathbf{x}\left(t_f\right), t_f\right)+\int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$
其中$t_0$和$t_f$是初始时间和最终时间;$h$和$g$是标量函数。$t_f$可以是指定的,也可以是“free”的,这取决于问题声明。
从初始状态$\mathbf{x}\left(t_0\right)=\mathbf{x}_0$开始,施加一个控制信号$\mathbf{u}(t)$,对于$t \in\left[t_0, t_f\right]$,使系统遵循某种状态轨迹;性能度量为系统的每个轨迹分配一个唯一的实数。根据我们积累的背景资料,现在可以对“最优控制问题”给出一个明确的表述。

数学代写|最优化作业代写optimization theory代考

数学代写|最优化作业代写optimization theory代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment