Scroll Top
19th Ave New York, NY 95822, USA

数学代写|MATH483 Commutative Algebra

MY-ASSIGNMENTEXPERT™可以为您提供wgtn MATH483 Commutative Algebra交换代数课程的代写代考辅导服务!

这是悉尼大学交换代数课程的代写成功案例。

数学代写|MATH483 Commutative Algebra

MATH483课程简介

This course will focus on the theory of rings and modules, with an eye to applications to algebraic number theory.

The class representative provides a useful way to communicate feedback to the teaching staff during the course. They also work with the VUWSA Education Office on any academic issues that arise in their course. Reps are elected by students by the third week of classes every trimester. Being a rep requires a weekly commitment.

Prerequisites 

Keep your uni experience running smoothly—find out how to manage your studies from enrolment through to graduation.

Find out more:

  • Enrolment and course advice
  • Student conduct and feedback
  • Examinations and assessments

MATH483 Commutative Algebra HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

Let $I_1, I_2 \subset K[x]{>}$be as in Section 1.8.7. We consider the quotient of $I_1$ by powers of $I_2$ $$ I_1=I_1: I_2^0 \subset I_1: I_2^1 \subset I_1: I_2^2 \subset I_1: I_2^3 \subset \ldots \subset K[x]{>} .
$$
Since $K[x]{>}$is Noetherian, there exists an $s$ such that $I_1: I_2^s=I_1: I_2^{s+i}$ for all $i \geq 0$. Such an $s$ satisfies $$ I_1: I_2^{\infty}:=\bigcup{i \geq 0} I_1: I_2^i=I_1: I_2^s,
$$
and $I_1: I_2^s$ is called the saturation of $I_1$ with respect to $I_2$.
The minimal such $s$ is called the saturation exponent. If $I_1$ is radical, then the saturation exponent is 1 .

Problem: Given ideals $I_1, I_2 \subset K[x]_{>}$, we want to compute generators for $I_1: I_2^{\infty}$ and the saturation exponent.

Solution: Set $I^{(0)}=I_1$ and compute successively $I^{(j+1)}=I^{(j)}: I_2, j \geq 0$, by any of the methods of Section 1.8.8. In each step check whether $I^{(j+1)} \subset I^{(j)}$, by using Section 1.8.1. If $s$ is the first $j$ when this happens, then $I^{(s)}=I_1: I_2^{\infty}$ and $s$ is the saturation exponent.

问题 2.

Recall that a sequence of polynomials $f_1, \ldots, f_k \in K\left[x_1, \ldots, x_n\right]$ is called algebraically dependent if there exists a polynomial $g \in K\left[y_1, \ldots, y_k\right] \backslash{0}$ satisfying $g\left(f_1, \ldots, f_k\right)=0$. This is equivalent to $\operatorname{Ker}(\varphi) \neq 0$, where $\varphi: K\left[y_1, \ldots, y_k\right] \rightarrow K\left[x_1, \ldots, x_n\right]$ is defined by $\varphi\left(y_i\right)=f_i \cdot \operatorname{Ker}(\varphi)$ can be computed according to Section 1.8.10, and any $g \in \operatorname{Ker}(\varphi) \backslash{0}$ defines an algebraic relation between the $f_1, \ldots, f_k$. In particular, $f_1, \ldots, f_k$ are algebraically independent if and only if $\operatorname{Ker}(\varphi)=0$ and this problem was solved in Section 1.8.10.
Related, but slightly different is the subalgebra-membership problem.
Problem: Given $f \in K\left[x_1, \ldots, x_n\right]$, we may ask whether $f$ is an element of the subalgebra $K\left[f_1, \ldots, f_k\right] \subset K\left[x_1, \ldots, x_n\right]=K[x]$.
Solution 1: Define $\psi: K\left[y_0, \ldots, y_k\right] \rightarrow K[x], y_0 \mapsto f, y_i \mapsto f_i$, compute $\operatorname{Ker}(\psi)$ according to Section 1.8 .10 and check whether $\operatorname{Ker}(\psi)$ contains an element of the form $y_0-g\left(y_1, \ldots, y_k\right)$. That is, we define an elimination ordering for $x_1, \ldots, x_n$ on $\operatorname{Mon}\left(x_1, \ldots, x_n, y_0, \ldots, y_k\right)$ with $y_0$ greater than $y_1, \ldots, y_k$ (for example, $\left.(\mathrm{dp}(\mathrm{n}), \mathrm{dp}(1), \mathrm{dp}(\mathrm{k}))\right)$ and compute a standard basis $G$ of $\left\langle y_0-f, y_1-f_1, \ldots y_k-f_k\right\rangle$. Then $G$ contains an element with leading monomial $y_0$ if and only if $f \in K\left[f_1, \ldots, f_k\right]$.

Solution 1: Define $\psi: K\left[y_0, \ldots, y_k\right] \rightarrow K[x], y_0 \mapsto f, y_i \mapsto f_i$, compute $\operatorname{Ker}(\psi)$ according to Section 1.8 .10 and check whether $\operatorname{Ker}(\psi)$ contains an element of the form $y_0-g\left(y_1, \ldots, y_k\right)$. That is, we define an elimination ordering for $x_1, \ldots, x_n$ on $\operatorname{Mon}\left(x_1, \ldots, x_n, y_0, \ldots, y_k\right)$ with $y_0$ greater than $y_1, \ldots, y_k$ (for example, $\left.(\mathrm{dp}(\mathrm{n}), \mathrm{dp}(1), \mathrm{dp}(\mathrm{k}))\right)$ and compute a standard basis $G$ of $\left\langle y_0-f, y_1-f_1, \ldots y_k-f_k\right\rangle$. Then $G$ contains an element with leading monomial $y_0$ if and only if $f \in K\left[f_1, \ldots, f_k\right]$.
Solution 2: Compute a standard basis of $\left\langle y_1-f_1, \ldots, y_k-f_k\right\rangle$ for an elimination ordering for $x_1, \ldots, x_n$ on $\operatorname{Mon}\left(x_1, \ldots, x_n, y_1, \ldots, y_k\right)$ and check whether the normal form of $f$ with respect to this standard basis does not involve any $x_i$. This is the case if and only if $f \in K\left[f_1, \ldots, f_k\right]$ and the normal form expresses $f$ as a polynomial in $f_1, \ldots, f_k$.

问题 3.

Problem: Let $I_1$ and $I_2 \subset R^r$ be as in Section 2.8.3. Find a (polynomial) system of generators for the quotient
$$
I_1:_R I_2=\left{g \in R \mid g I_2 \subset I_1\right} .
$$
Note that $I_1:_R I_2=\operatorname{Ann}_R\left(\left(I_1+I_2\right) / I_1\right)$, in particular, if $I_1 \subset I_2$, then we have $I_1:_R I_2=\operatorname{Ann}_R\left(I_2 / I_1\right)$.

Solution 1: Compute generating sets $G_i$ of $I_1 \cap\left\langle h_i\right\rangle, i=1, \ldots, s$, according to Section 2.8.3, “divide” the generators by the vector $h_i$, getting the generating set $G_i^{\prime}=\left{g \in R \mid g h_i \in G_i\right}$ for $I_1:_R\left\langle h_i\right\rangle$. Finally, compute the intersection $\bigcap_i\left(I_1:_R\left\langle h_i\right\rangle\right)$, again according to 2.8 .3 .

Note that there is a trick which can be used to “divide” by the vector $h_i$ : let $G_i=\left{v_1, \ldots, v_{\ell}\right}$ and compute a generating system $\left{w_1, \ldots, w_m\right}$ for $\operatorname{syz}\left(v_1, \ldots, v_{\ell}, h_i\right)$. Then the last $(=(\ell+1)-$ th $)$ components of $w_1, \ldots, w_m$ generate the $R$-module $I_1:_R\left\langle h_i\right\rangle$.

Solution 2: Define $h:=h_1+t_1 h_2+\ldots+t_{s-1} h_s \in K\left[t_1, \ldots, t_{s-1}, x_1, \ldots, x_n\right]^r$, and compute a generating system for $\left(I_1 \cdot R[t]\right):{R[t]}\langle h\rangle{R[t]}$, as before. Finally, eliminate $t_1, \ldots, t_{s-1}$ from $\left(I_1 \cdot R[t]\right):{R[t]}\langle h\rangle{R[t]}$ (cf. Section 1.8.2).

问题 4.

Let $A=R / I$ for some ideal $I \subset R$ and let $M, N$ be two $A$-modules with $N \subset M$. Define the radical of $N$ in $M$ as the ideal
$$
\operatorname{rad}_M(N):=\sqrt[M]{N}:=\left{g \in A \mid g^q M \subset N \text { for some } q>0\right} .
$$
Problem: Solve the radical membership problem for modules, that is, decide whether $f \in A$ is contained in $\sqrt[M]{N}$, or not. ${ }^{16}$

Solution: By Exercise 2.8.6, $\sqrt[M]{N}=\sqrt{\operatorname{Ann}_A(M / N)}$. Hence, we can compute generators for $\operatorname{Ann}_A(M / N)=N:_A M \subset A$ as in Section 2.8.4, and then we are reduced to solving the radical membership problem for ideals which was solved in Section 1.8.6. ${ }^{17}$

数学代写|MATH483 Commutative Algebra

MY-ASSIGNMENTEXPERT™可以为您提供wgtn MATH483 Commutative Algebra交换代数课程的代写代考辅导服务!

Leave a comment